Design Tableau: An aid to specifying the linear mixed model for a comparative experiment

Alison Smith and Brian Cullis

Centre for Bioinformatics and Biometrics NIASRA, University of Wollongong, Australia

AASC18, December 2018 Rotorua, NZ

NIASRA

Design Tableau

Overview of talk

- Motivation
- Calf-feeding example
 - Randomisation distribution
 - Analysis of Variance (ANOVA)
 - Linear Mixed Model (LMM)
- Design Tableau approach
 - Definitions
 - Essential steps
 - Application to calf-feeding example
- Design Tableau for non-orthogonal designs
 - All steps
 - Application to frost expression example
- Summary

A personal history of ANOVA and REML/LMM

- A major focus over last 30 years: linear mixed models (LMM) for data from plant improvement programmes
- Comparative experiments: aim is to select "best" varieties
- Developed LMM to maximise accuracy of selection
- Often involve complex variance and correlation structures
 - · separable autoregressive processes for field trend
 - factor analytic models for variety by environment interaction
 - genetic relatedness using pedigree or marker information
- How did we get here?

A personal history of ANOVA and REML/LMM

- We trained and worked as young biometricians when analysis of variance (ANOVA) was primary method for comparative experiments
- GENSTAT was tool of trade so
 - "Block" and "Treatment" structures
 - Wilkinson and Rogers (1973) notation

ingrained in our statistical thinking

- Despite complexity of our LMM we (attempt to) maintain these fundamental concepts, especially the link between design and analysis
- Are we outliers?

Mis-use of LMM for comparative experiments

- With proliferation of LMM software (ASReml-R, SAS, Ime, ...), a move away from ANOVA techniques
- Literature full of examples of the mis-use of LMM for comparative experiments. Some common flaws include
 - failing to recognise pseudo (or false) replication
 - · testing/dropping model terms that define strata
 - · providing standard errors for means (not contrasts)
 - failing to recognise the need for negative estimates of variance components
 - failing to provide sufficient detail for reader to uncover some of these flaws!

Mis-use of LMM for comparative experiments

- Perhaps an unintentional lapse in transitioning from ANOVA to LMM
- Perhaps a lack of exposure to traditional methods of analysis for comparative experiments
- In recent years, we have made it a priority to fill in this gap for young statistical colleagues in CBB at UOW
 - Link between ANOVA and REML/LMM
 - How to derive LMM that reflect experimental design, no matter how complex
- Non-trivial mentoring exercise!! Tried various approaches but no great success, until . . .

Motivation Design Tableau

- Brian's Honours course on Experimental Design at UOW
 - Based on Bailey's "Design of Comparative Experiments" (2008).
- Bailey (2008) contains words of wisdom that inspired us to develop "Design Tableau"
 - A simple but general series of steps for specifying the LMM for a comparative experiment
 - Founded on the seminal work of John Nelder, Robin Thompson and Rosemary Bailey

Motivation Design Tableau

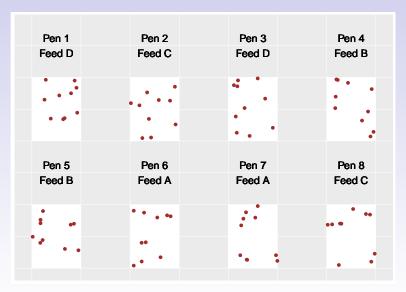
- Design Tableau can be used for classical analyses of experiments with orthogonal designs
- · But also (and more typically) for
 - complex experiments with non-orthogonal designs (eg. multi-environment trials, longitudinal data)
 - complex variance modelling (model based analysis)
- Let's start at the beginning . . .

Text-book example (Bailey, 2008) Calf feeding experiment

- Four (t=4) feed treatments (A,B,C,D) are to be compared using n=80 calves
- The calves are housed in m=8 pens with k=10 calves per pen so that n=mk
- Each pen allocated one of the four feeds (all calves within the pen consume the same feed)
- Calves are weighed individually at birth then at several times thereafter
- For illustrative purposes we assume variable to be analysed is average daily weight gain for each calf:

$$y = \frac{ ext{final calf weight} - ext{initial calf weight}}{ ext{number of days}}$$

Text-book example (Bailey, 2008) Calf feeding experiment



Classical analysis Randomisation theory

- Classical analysis for comparative experiments is based on randomisation theory (Nelder, 1954)
- Data are re-randomised to the observational units and inferences are based on the observed outcome of the resultant randomisation distribution
- This provides a platform for inference that is distribution-free

Randomisation distribution: the null experiment

- Consider the null experiment: all calves are assumed to receive the same treatment (Nelder, 1954, 1965a)
- To obtain the moments of the randomisation distribution the observed data are considered as given or known
- Let x_{ij} , $i=1\ldots m, j=1\ldots k$ be the observed datum from the j^{th} calf in the i^{th} pen
- From these numbers form a set of random variables y_{ij} by
 - Choose a pen at random; re-order members at random to give y_{11}, \dots, y_{1k}
 - Repeat procedure with another pen to give y_{21}, \ldots, y_{2k}
 - Repeat for all other pens

Randomisation distribution: the null experiment

• The (null) distribution of the y_{ij} is such that

$$\begin{array}{rcl} \mathrm{E}\left(y_{ij}\right) &=& \mu_0 \\ \mathrm{var}\left(y_{ij}\right) &=& \sigma_y^2 \\ \mathrm{cov}\left(y_{ij},\; y_{ib}\right) &=& \rho_1\sigma_y^2 \; \left(j\neq b, \mathsf{so}\; \mathsf{2}\; \mathsf{calves}\; \mathsf{in}\; \mathsf{same}\; \mathsf{pen}\right) \\ \mathrm{cov}\left(y_{ij},\; y_{ab}\right) &=& \rho_2\sigma_y^2 \; \left(i\neq a, \mathsf{so}\; \mathsf{2}\; \mathsf{calves}\; \mathsf{in}\; \mathsf{different}\; \mathsf{pens}\right) \end{array}$$

 In vector notation, and assuming that the data are ordered as calves within pens

$$E(\boldsymbol{y}) = \mu_0 \mathbf{1}_n$$

$$var(\boldsymbol{y}) = \sigma_y^2 [(1 - \rho_1) \boldsymbol{I}_m \otimes \boldsymbol{I}_k + \rho_2 \boldsymbol{J}_m \otimes \boldsymbol{J}_k + (\rho_1 - \rho_2) \boldsymbol{I}_m \otimes \boldsymbol{J}_k]$$

where \boldsymbol{J}_m is an $m \times m$ matrix with all elements equal to 1

Randomisation distribution and ANOVA

- Null Analysis of Variance (ANOVA) is built up by forming strata which are defined as the eigenspaces of var(y)
- For calf experiment there are 3 eigenspaces, with dimensions $1,\ (m-1)$ and m(k-1) and eigenvalues
 - $\xi_0 = \sigma_y^2 (1 \rho_1) + \sigma_y^2 k(\rho_1 \rho_2) + \sigma_y^2 m k \rho_2$ • $\xi_1 = \sigma_y^2 (1 - \rho_1) + \sigma_y^2 k(\rho_1 - \rho_2)$
 - $\xi_1 = \sigma_y^2 (1 \rho_1) + \sigma_y^2 k (\rho_1 \rho_2)$ • $\xi_2 = \sigma_y^2 (1 - \rho_1)$
- These will be called the "mean", "pens" and "calves" strata

Randomisation distribution and ANOVA

• We can then re-express $\operatorname{var}\left(oldsymbol{y}\right)$ as

$$\operatorname{var}(\boldsymbol{y}) = \xi_0 \boldsymbol{P}_0 + \xi_1 \boldsymbol{P}_1 + \xi_2 \boldsymbol{P}_2$$

• The ${m P}_s,\ s=0,1,2$ are orthogonal projection matrices that can be written as ${m K}_s {m K}_s^{\! {\scriptscriptstyle o}}$

Stratum	$oldsymbol{P}_s$	$oldsymbol{K}_s$
mean	$oldsymbol{J}_m \otimes oldsymbol{J}_k/(mk)$	$1_m/\sqrt{m}\otimes1_k/\sqrt{k}$
pens	$oldsymbol{I}_m \otimes oldsymbol{J}_k/k - oldsymbol{J}_m \otimes oldsymbol{J}_k/(mk)$	$({m I}_m - {m J}_m/m) \otimes {m 1}_k/\sqrt{k}$
calves	$oldsymbol{I}_m \otimes oldsymbol{I}_k - oldsymbol{I}_m \otimes oldsymbol{J}_k/k$	$m{I}_m \otimes (m{I}_k - m{J}_k/k)$

• The strata define 3 independent linear models that are obtained by applying a one-to-one transformation of the data from y to K^Ty where $K = [K_0 \ K_1 \ K_2]$

Randomisation distribution plus treatments

- We now consider the imposition of the treatments so that $\mathrm{E}\left(y_{ij}\right)=\mu_{\scriptscriptstyle A},\ \mu_{\scriptscriptstyle B},\ \mu_{\scriptscriptstyle C}$ or $\mu_{\scriptscriptstyle D}$
- Thus the first and second moments of the distribution are given by

$$E(\boldsymbol{y}) = \boldsymbol{\mu} \otimes \mathbf{1}_k$$
$$var(\boldsymbol{y}) = \xi_0 \boldsymbol{P}_0 + \xi_1 \boldsymbol{P}_1 + \xi_2 \boldsymbol{P}_2$$

where
$$\pmb{\mu}=(\mu_{\scriptscriptstyle D},\mu_{\scriptscriptstyle C},\mu_{\scriptscriptstyle D},\mu_{\scriptscriptstyle B},\mu_{\scriptscriptstyle B},\mu_{\scriptscriptstyle A},\mu_{\scriptscriptstyle A},\mu_{\scriptscriptstyle C})^{\!\scriptscriptstyle \top}$$

Linear models for strata

 The 3 linear models associated with the strata are defined for K_s^Ty, s = 0, 1, 2 with

Stratum	$\mathrm{E}\left(oldsymbol{K}_{s}^{\! o}oldsymbol{y} ight)$	$\text{var}\left(\boldsymbol{K}_{s}^{\!\top}\boldsymbol{y}\right)$
mean	$\bar{\mu}\sqrt{mk}$	ξ_0
pens	$(\boldsymbol{\mu} - \bar{\mu} 1_m) \sqrt{k}$	$\xi_1 oldsymbol{I}_{(m-1)}$
calves	0	$\xi_2 oldsymbol{I}_{m(k-1)}$

where
$$\bar{\mu} = \sum_{ij} \mathrm{E}\left(y_{ij}\right)/n$$

- ξ_s called stratum variances
- Typically the 3 models are represented using an ANOVA table . . .

Calf feeding experiment: ANOVA table

Stratum	Source	df	ms	E(ms)	VR
mean		1			
	Mean	1	ms_M	$f_0(\bar{\mu}) + \xi_0$	
	residual	0			
pens		7			
	Feed	3	ms_F	$f_1(\boldsymbol{\mu} - \bar{\mu}1_m) + \xi_1$	ms_F/ms_P
	residual	4	ms_P	ξ_1	
calves		72			
	residual	72	ms_R	ξ_2	
	Total	80			

- Using Nelder (1965b) can show that information on
 - Mean entirely in mean stratum. Obtain best linear unbiased estimate (BLUE) of mean within this stratum.
 - Feed treatment contrasts entirely in pens stratum. Obtain BLUEs of contrasts within this stratum.
- Residual mean squares provide unbiased estimates of stratum variances; cannot estimate ξ_0 so arbitrarily set $\xi_0 = \xi_1$

Calf feeding experiment: ANOVA table

Stratum	Source	df	ms	E(ms)	VR
mean		1			
	Mean	1	ms_M	$f_0(\bar{\mu}) + \xi_0$	
	residual	0			
pens		7			. – – – – – -
·	Feed	3		$f_1(\boldsymbol{\mu} - \bar{\mu}1_m) + \xi_1$	ms_F/ms_P
	residual	4	ms_P	ξ_1	
calves		72	. – – – –		
	residual	72	ms_R	ξ_2	
	Total	80			

• In order to test hypothesis $H_0: \mu_A = \mu_B = \mu_C = \mu_D$ must assume multivariate Normal distribution, so

$$\boldsymbol{y} \sim N\left(\boldsymbol{\mu} \otimes \mathbf{1}_{k}, \ \xi_{0} \boldsymbol{P}_{0} + \xi_{1} \boldsymbol{P}_{1} + \xi_{2} \boldsymbol{P}_{2}\right)$$

• Then test H_0 by comparing the VR with an F-distribution on (3,4) df

Calf feeding experiment ANOVA and Linear Mixed Model

ANOVA model assuming multivariate Normal distribution:

$$\boldsymbol{y} \sim N\left(\boldsymbol{\mu} \otimes \mathbf{1}_{k}, \ \xi_{0}\boldsymbol{P}_{0} + \xi_{1}\boldsymbol{P}_{1} + \xi_{2}\boldsymbol{P}_{2}\right)$$

• Except that must set $\xi_0 = \xi_1$ so

$$y \sim N \quad (\boldsymbol{\mu} \otimes \mathbf{1}_k, \quad \xi_1 (\boldsymbol{P}_0 + \boldsymbol{P}_1) + \xi_2 \boldsymbol{P}_2)$$

 $\sim N \quad (\boldsymbol{\mu} \otimes \mathbf{1}_k, \quad \xi_1 \boldsymbol{I}_m \otimes \boldsymbol{J}_k / k + \xi_2 \boldsymbol{I}_m \otimes (\boldsymbol{I}_k - \boldsymbol{J}_k / k))$

· We can fit this as a linear mixed model

Linear Mixed Model

The linear mixed model (LMM) for the data vector y is

$$y = X\tau + Zu + e$$

- au is the vector of fixed effects with associated design matrix X (assumed full column rank)
- u is the vector of random effects with associated design matrix Z
- e is the vector of residuals
- Variance models given by:

$$\operatorname{var}\left(oldsymbol{u}
ight) = oldsymbol{G} \quad \& \ \operatorname{var}\left(oldsymbol{e}
ight) = oldsymbol{R} \ \operatorname{var}\left(oldsymbol{y}
ight) = oldsymbol{Z}oldsymbol{G}^{ op} + oldsymbol{R}$$

- Fitting the LMM ⇒
 - Residual Maximum Likelihood (REML) estimates of variance parameters
 - Empirical Best Linear Unbiased Estimates (EBLUEs) of fixed effects
 - Empirical Best Linear Unbiased Predictions (EBLUPs) of random effects

Equivalence of ANOVA and Linear Mixed Model

 τ is the t- vector of fixed effects (overall mean and feed treatment effects) with associated design matrix X so that

$$\mathbf{E}(\boldsymbol{y}) = \boldsymbol{X}\boldsymbol{\tau}$$

 $\equiv \boldsymbol{\mu} \otimes \mathbf{1}_k$

- ${m u}$ is the m- vector of random pen effects with associated design matrix ${m Z}={m I}_m\otimes {m 1}_k$
- Variance models given by:

$$\operatorname{var}(\boldsymbol{u}) = \sigma_p^2 \boldsymbol{I}_m \, \& \, \operatorname{var}(\boldsymbol{e}) = \sigma^2 \boldsymbol{I}_{mk}$$

$$\operatorname{var}(\boldsymbol{y}) = \sigma_p^2 \boldsymbol{I}_m \otimes \boldsymbol{J}_k + \sigma^2 \boldsymbol{I}_m \otimes \boldsymbol{I}_k$$

$$\equiv \xi_1 \boldsymbol{I}_m \otimes \boldsymbol{J}_k / k + \xi_2 \boldsymbol{I}_m \otimes (\boldsymbol{I}_k - \boldsymbol{J}_k / k)$$

where
$$\xi_1 = k\sigma_p^2 + \sigma^2$$
 and $\xi_2 = \sigma^2$

Equivalence of ANOVA and Linear Mixed Model

Variance parameter estimates:

ANOVA	LMM	note/proviso
$\hat{\xi}_1, \ \hat{\xi}_2$	$ \hat{\sigma}_p^2, \ \hat{\sigma}^2 $ $ \hat{\xi}_1 = k\hat{\sigma}_p^2 + \hat{\sigma}^2 $ $ \hat{\xi}_2 = \hat{\sigma}^2 $	allow $\hat{\sigma}_p^2 < 0$

· Treatment effect estimates and inference:

ANOVA	LMM	note/proviso
$\hat{\mu}_i, \;\;_{i=A,B,C,D}$ se $(\hat{\mu}_i - \hat{\mu}_j)$ F test, df	$\hat{\mu}_i, \;\;_{i=A,B,C,D}$ se $(\hat{\mu}_i - \hat{\mu}_j)$ Wald test, df	$\operatorname{se}(\hat{\mu}_i)$ not valid (ξ_0 not estimable) allow $\hat{\sigma}_p^2 < 0$; use Kenward & Roger (1997) for Wald df
		-

Comparative experiments Linear Mixed Model

- How can we derive an appropriate LMM for a comparative experiment?
- We use an approach that we have called "Design Tableau"
- It can be used for quite complex non-orthogonal experiments, with the aim that it reproduces an ANOVA in orthogonal cases
- Design Tableau requires some definitions . . .

Comparative experimentsSome key definitions (Bailey, 2008)

- An experimental unit is the smallest unit to which a treatment can be applied
- A treatment is the entire description of what can be applied to an experimental unit
- An observational unit is the smallest unit on which a response will be measured. It is often called a plot.

Comparative experimentsSome key definitions (Bailey, 2008)

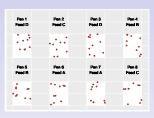
- All designs have three components:
 - A plot structure: meaningful ways of dividing up the set of all plots
 - A treatment structure: meaningful ways of dividing up the set of all treatments
 - A design function: manner in which treatments are allocated to plots
- Plot and treatment structures described using factors
 - Universal factor (a single level): must be both a treatment ("1") and plot factor ("U")
 - Aliasing of factors: "F" and "G" aliased if the same apart from names of their levels
 - A factor may occur in either the plot or treatment structure, but not both (Welham, pers comm)

Design Tableau Essential steps

- **Step 0** Talk to researcher and draw a picture of the experimental layout!
- Step 1 Define treatments; list treatment factors
- Step 2 Define plots (observational units); list plot factors
- **Step 3** Describe design function (how treatments are allocated to plots); thence define experimental unit

Calf feeding example

Step 0



- Step 1 treatments = feeds (4 treatments)
 - treatment factors = { 1, Feed (4 levels) }
- **Step 2** plots (observational units) = calves (80 units)
 - plot factors = { U, Pen (8 levels), Calf (10 levels) }
- design function: feeds allocated to calves such that all 10 calves within a pen receive same feed. Experimental units = pens

Design Tableau Essential steps

- Step 6 Use treatment factors to construct model formula for treatment structure (Wilkinson and Rogers, 1973, notation)
 - Universal factor "1" included by default
 - Terms in formula will be included in LMM as fixed effects
- Step 7 Use plot factors to construct model formula for plot structure
 - Combinations of levels of factors must completely index observational units
 - · Universal factor "U" included by default
 - Terms in formula will be included in LMM as random effects, each set with IID variance structure

Design Tableau Essential steps

- Step 8 Identify obvious aliasing of factors in treatment structure with factors in plot structure eg. "1" and "U" (re-write as "1[U]" or "U[1]")
- **Step 9** Construct a table (Design Tableau) listing all terms in the treatment model formula followed by terms in plot model formula
- Step 11 Fit LMM commensurate with Design Tableau

Calf feeding example

Design Tableau

Step 6 treatment structure model formula:

$$1/\text{Feed} \equiv 1 + \text{Feed}$$

Step 7 plot structure model formula:

U/Pen/Calf ≡ U + Pen + Pen:Calf

- Step 8 Aliasing: "1" and "U". Write "1[U]" where fitted as fixed and "U[1]" where fitted as random
- Step 9 Design Tableau

	Term in	Fixed or	Variance
Source	model	Random	model
1[U]	1	F	
Feed	Feed	F	
Ū[1]		- R	
Pen	Pen	R	$\sigma_n^2 oldsymbol{I}_m$
Pen:Calf	Pen:Calf	R	$egin{array}{l} \sigma_p^2 oldsymbol{I}_m \ \sigma^2 oldsymbol{I}_{mk} \end{array}$
	(= residual)		

Calf feeding example

Step 11 using ASReml-R (Butler et al, 2009)

- Fit linear mixed model:
 calf.asr <- asreml(y ~ 1 + Feed, random = ~ Pen, residual = ~ units, data= ...)
 - 1 + Feed: fixed model formula, includes overall mean 1 by default
 - random = ~ Pen: random model formula, default IID variance model, default constrained positive
 - residual = ~ units: residual model formula, default IID variance model for units (factor with n levels)
- Estimates, $\hat{\mu}_i$, and sed for feed means: predict(calf.asr, classify="Feed")
- Test hypothesis $H_0: \mu_A = \mu_B = \mu_C = \mu_D$ Wald(calf.asr, denDF="algebraic")

Design Tableau for comparative experiments

Summary: orthogonal designs

- Have demonstrated how Design Tableau can be used to derive a LMM that is a surrogate for randomisation-based ANOVA for experiments with orthogonal designs.
- Some provisos . . .
 - Allow negative estimates of variance components so can reproduce strata for valid inference
 - Use Kenward & Roger (1997) df adjustments so can use correct reference distribution for F-tests
- Note that we do not attempt to structure Design Tableau table like an ANOVA (strata, sources within strata) since in non-orthogonal cases this is not possible

Design Tableau for comparative experiments

Summary: non-orthogonal designs

- Very few of the experiments we analyse use orthogonal designs!
- Also typically complex (unbalanced multi-environment trials; longitudinal data; multi-phase experiments with composite sampling . . .)
- But we always start with Design Tableau to obtain the terms that reflect the randomisation used in the experiment. This provides safe-guard against false replication, omission of strata, ...
- For most experiments, Design Tableau provides base-line "working model" which we may extend in various ways eg. incorporate spatial correlation models for field trials, factor analytic models for variety by environment effects, . . .

Design Tableau All steps (so far!)

- **Step 0** Picture of the experimental layout
- **Step 1** Define treatments; list treatment factors
- Step 2 Define plots (observational units); list plot factors
- Step 3 Describe design function; define experimental unit
- Step 4 List anatomical variables, if any
- Step 5 List extraneous variables, if any
- **Step 6** Use treatment factors and anatomical variables to construct model formula for treatment structure

Design TableauAll steps (so far!)

- Step 7 Use plot factors to construct model formula for plot structure
- **Step 8** Identify obvious aliasing between factors in treatment and plot structures
- Step 9 Construct a table (Design Tableau) listing all terms in the treatment model formula followed by terms in plot model formula
- **Step 10** Possibly modify "working" table from **Step 9** eg.
 - Incorporate more complex variance structures for random effects
 - Selection experiments: move treatment effects from fixed to random
- Step 11 Fit LMM commensurate with final Design Tableau

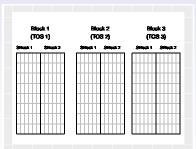
Example: non-orthogonal design

Frost expression experiments

- Frost damage a key issue for Australian wheat growers
- Frost expression experiments (FEEs) conducted at sites across Australia to provide information for growers on tolerance of commercial and near release varieties
- FEEs are field trials in which varieties exposed to natural frost events
- Variable of interest, frost induced sterility (FIS), obtained after frost events: ratio of number of sterile grains to total grains for individual tillers

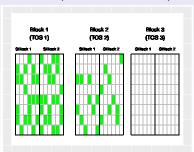
Protocol for single FEE

- Each variety grown at several times of sowing (TOS) to ensure some tillers at correct stage of development (SOD) when frost event occurs
- All plots for a TOS grouped together in a block
- Within each TOS block a randomised complete block design for varieties
- An illustrative example: 3 TOS blocks; 48 varieties; 2 replicates of varieties within each TOS block



Protocol for single FEE

- After a frost event, researchers walk through the trial
 - Visually assses if any tillers in a plot are at an SOD of interest (flowering and ear peep)
 - If so, tag these tillers (up to a maximum of 30 per stage per plot), but leave the plant to continue growing
 - About 2 weeks after frost event, tagged tillers are cut and individually bagged; grains counted to provide FIS
 - Highly unbalanced: only a subset of plots measured for a single frost event (and number varies between TOS blocks); number of tillers measured in a plot varies between plots



Frost expression experiments Some key issues

- · Data for single frost event highly unbalanced
- Typically multiple frost events so potential for repeated measurements on a plot. Even more imbalance (number of repeated measurements per plot varies and may be 0)
- Aim is to assess variety tolerance but expect variety by TOS (careful!), variety by SOD and possibly variety by TOS by SOD interactions
- Finally there are 11 FEEs so a multi-environment trial analysis required to examine interactions with environment
- Where to begin?

Frost expression experiments Design Tableau

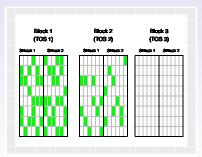
- · Where to begin?
- Start with Design Tableau for a single trial and frost event
- Illustrate some key points using simple example and assuming complete balance: 33 tillers measured in every plot (total of 9504 observational units)
- We can use ANOVA for this . . .

Frost expression experiments Single FEE and single frost event (balanced): ANOVA table

Stratum	Source	df
mean		1
	Mean	1
	residual	0
Block		2
	TOS	2
	residual	0
Block:SBlock	Block:SBlock	3
Block:SBlock:Plot		282
	Variety	47
	TOS:Variety	94
	residual	141
Block:SBlock:Plot:Tiller	residual	9216
Total		9504

Single FEE and single frost event: ANOVA to Design Tableau

- TOS information is in Block stratum and no residual df (so no inference for testing)
- Variety information is in Block:SBlock:Plot stratum (not Block:SBlock:Plot:Tiller)
- How to capture all of this when we move into unbalanced scenario?
- How to add SOD?



Frost expression experiments Design Tableau for single FEE and single frost event

- Now allow for unequal number of tillers measured per plot (assume max of 50); unequal number of plots measured (max of 48 per sub-block); introduce SOD
 - treatments = TOS x Variety combinations (144 treatments)
 - treatment factors = { 1, TOS (3), Variety (48) }
 - plots (observational units) = tillers (n units)
 plot factors = { U, Block (3), SBlock (2), Plot (48), Tiller (50) }

Frost expression experiments Design Tableau for single FEE and single frost event

- design function: treatments allocated to plots so that
 - all tillers in same plot relate to same variety and TOS
 - each plot within sub-block allocated a different variety but same TOS
 - each sub-block within a block contains a single replicate of each variety and a single TOS
 - · each block receives a different TOS
- Anatomical variables: SOD (factor with 2 levels)

Frost expression experiments Design Tableau for single FEE and single frost event

- Step 6 treatment structure model formula: 1/(TOS*Variety*SOD)
- Step 7 plot structure model formula: U/Block/SBlock/Plot/Tiller
- Step 8 Aliasing
 - "1" and "U"
 - TOS and Block (write TOS[Block] where fitted as fixed and Block[TOS] where fitted as random)

Design Tableau for single FEE and single frost event

Step 9 Design Tableau (working table)

Source	Term in model	Fix/Ran
1[U]	1	F
TOS[Block]	TOS	F
Variety	Variety	F
TOS[Block]:Variety	TOS:Variety	F
SOD	SOD	F
TOS[Block]:SOD	TOS:SOD	F
Variety:SOD	Variety:SOD	F
TOS[Block]:Variety:SOD	TOS:Variety:SOD	F
U[1]	-	R
Block[TOS]	-	R
Block[TOS]:SBlock	Block:SBlock	R $\sigma_s^2 I$
Block[TOS]:SBlock:Plot	Block:SBlock:Plot	$egin{array}{ll} R & \sigma_p^2 m{I} \\ R & \sigma^2 m{I} \end{array}$
Block[TOS]:SBlock:Plot:Tiller	Block:SBlock:PLot:Tiller (=residual)	$R \ \ \sigma^2 \boldsymbol{I}$
	(=103ldddi)	

Frost expression experiments Design Tableau

- Have shown Design Tableau for single trial and frost event
- Extend to DT for single trial and multiple frost events
- Extend to DT for multiple trials and multiple frost events
- Finally modify LMM with complex variance models to accommodate multi-environment and longitudinal aspects
- See Cocks, March, Biddulph, Smith & Cullis (under revision) for full discussion, but here is final DT...

Frost expression experiments Final Design Tableau

Source	Term in model	Fix/Ran
1[U]	1	F
Env[Expt]	Env	F
Variety	-	R
Env[Expt]:Variety	Env:Variety	$R \ (\mathbf{\Lambda}\mathbf{\Lambda}' + \mathbf{\Psi}) \otimes \mathbf{I}$
SOD	SOD	F
Env[Expt]:TOS[Block]	at(Env,):TOS	F
Env[Expt]:SOD	at(Env,):SOD	F
Env[Expt]:TagEvent[Time]	at(Env,):Time	R $\oplus G_{1i}$
Env[Expt]:TOS[Block]:Variety	at(Env,):TOS:Variety	R $\oplus G_{2i}$
Env[Expt]:TOS[Block]:SOD	at(Env,):TOS:SOD	F
Env[Expt]:TOS[Block]:TagEvent[Time]	at(Env,):TOS:Time	R $\oplus oldsymbol{G}_{3i}$
Env[Expt]:Variety:SOD	at(Env,):Variety:SOD	R $\oplus oldsymbol{G}_{4i}$
Env[Expt]:Variety:TagEvent[Time]	at(Env,):Variety:Time	R $\oplus oldsymbol{G}_{5i}$
Env[Expt]:TOS[Block]:Variety:SOD	at(Env,):TOS:Variety:SOD	R $\oplus oldsymbol{G}_{6i}$
Env[Expt]:TOS[Block]:Variety:TagEvent[Time]	at(Env,):TOS:Variety:Time	R $\oplus G_{7i}$
Env[Expt]:Tagger	at(Env,):Tagger	$R^-\!\!\oplus\!\! oldsymbol{G}_{8i}$
Env[Expt]:Counter	at(Env,):Counter	R $\oplus G_{9i}$
- U[1]		R
Expt[Env]	-	R
Expt[Env]:Block[TOS]	-	R
Expt[Env]:Block[TOS]:SBlock	at(Env,):Block:SBlock	R $\oplus oldsymbol{G}_{10i}$
Expt[Env]:Block[TOS]:SBlock:Plot	at(Env,):Block:SBlock:Plot	R $\oplus G_{11i}$
Expt[Env]:Block[TOS]:SBlock:Time[TagEvent]	at(Env,):Block:SBlock:Time	R $\oplus G_{12i}$
Expt[Env]:Block[TOS]:SBlock:Plot:Time[TagEvent]	at(Env,):Block:SBlock:Plot:Time	R $\oplus oldsymbol{G}_{13i}$
Expt[Env]:Block[TOS]:SBlock:Plot:Time[TagEvent]:Tiller	residual	R $\oplus \mathbf{R}_i$

Frost expression experiments Impact of Design Tableau

- Previous analyses of these data did not use our approach and failed to identify key issues; a loss of faith in results by industry
- With use of Design Tableau and close association with researchers we have regained industry and grower confidence in the results. Complete acceptance.

Design Tableau for comparative experiments Summary

- We and our colleagues in CBB at UOW have been using Design Tableau for 12 months
- General consensus is that it is intuitive, straight-forward and helpful!
- Also useful for writing up statistical methods: reports for clients and journal papers
- We have used it for a wide range of (weird and wonderful) problems, including METs (with and without pedigree), GS, QTL detection, multi-phase

Design Tableau for comparative experiments Summary

- Design Tableau can also be used for designs generated using model-based techniques (our typical paradigm)
- Even the most experienced biometricians can miss key features when using LMM to analyse comparative experimets
- We believe Design Tableau provides a framework to safeguard against this

Design Tableau for comparative experiments Key references

- Bailey, R.A. 2008. The design of comparative experiments.
 Cambridge University Press.
- Nelder, J.A. 1954. The Interpretation of negative components of variance. Biometrika
- Nelder, J.A. 1965a. The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proceedings of the Royal Society, A.
- Nelder, J.A. 1965b. The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance.
 Proceedings of the Royal Society, A.