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QG ANALYSES
• Understanding of the genetic architecture is critical to any breeding 

program as it defines the Breeding Strategy

• Relevant information includes:

o Genetic control (additive, dominance, epistasis).

o Genotype-by-Environment (GxE).

o Genotype-by-Year (GxY). 

o Trait-to-trait correlations. 

o Temporal correlations. 

o Spatial correlations.

o Efficiency of Pedigree- or Molecular-based analyses.

• All of these require parameters estimated by Linear Mixed Models. 



• Spatial Analyses 

• Pedigree Information 

• Optimal Design of Field Experiments

• Genomic Selection (Strawberry)

• Challenges with Genomic Selection

OUTLINE



o Linear Mixed Models extend the linear model by allowing a more flexible 

specification of the errors (and other random factors). Hence, it allows for a 

different type of inference and also allows to incorporate correlation and 

heterogeneous variances between the observations.
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b ~ MVN(0, G) and e ~ MVN(0, R)
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SPATIAL ANALYSIS

• It corresponds to an extension to the single vector repeated measures analysis.

• Incorporates information from physical positions (x and y coordinates).

𝐲 = 𝐗𝛃 + 𝐙𝐚 + 𝐞 a ~ MVN(0, G), G = σa
2I or G = σa

2A 

e ~ MVN(0, R), R = σe
2ΣxΣy



11 C2 24 112 23 69 C1 96 22 6 34 C1

85 101 48 C1 28 7 89 60 C2 108 74 56

47 C1 10 43 C2 16 52 5 38 33 C2 93

65 111 64 100 81 104 C2 78 C1 113 21 106

12 C2 44 68 42 C1 97 17 32 73 C1 35

25 C1 27 C2 15 88 29 4 53 C2 55 75

102 84 1 49 C1 61 70 C2 18 95 37 C1

46 86 C2 63 2 51 79 39 59 92 C2 57

66 13 C1 82 41 98 C2 90 C1 77 20 36

C1 45 83 87 C2 62 3 30 72 54 105 76

26 C2 9 14 50 8 40 C1 31 19 C2 C1

110 103 67 C1 99 80 C2 71 91 58 109 94

AUGMENTED DESIGNS (AD)

• Field experiments that allows testing several hundreds of genotypes with little 

or no replication.

• Most treatments (with the exception of controls or checks) have a single

replication.



OBJECTIVE

✓ Evaluate the performance of augmented designs (AD) and double replication 

designs (DR) in an array of genetical and spatial scenarios.

✓ Compare the effects of different levels of spatial correlation (with and nugget) 

on the estimation of genetic parameters.

✓ Compare traditional against spatial analyses.

✓ Evaluate the ‘benefits’ of incorporation pedigree information into the model.



MATERIALS AND METHODS
• Simulation of a field: 1,024 plots (64 rows x 16 columns)

• Incorporation of surface with correlated errors (AR1) with and without nugget.

• Base heritability: H2 = 0.50

• Values for ρ𝑥 and ρ𝑦 varied from 0.02 and 0.98 and |ρ𝑥 − ρ𝑦| < 0.85

• Nugget (𝜂) ranged between 30% and 70%.

• 500 simulations of each scenario.

Simulations for Clonal Value Estimation

Designs

Proportion 

Control 

Plots 

# Plots # Genotypes

# Blocks
Control Test Control Test

AD6.25 6.25% 64 960 4 960 8

AD12.5 12.5% 128 896 4 896 8

AD25 25% 256 768 4 768 8

DR 0% 0 512 0 512 2

𝒚 = 𝟏µ + 𝒁𝟏𝒃 + 𝒁𝟐𝒈 + 𝒆



STATISTICAL ANALYSES
Models Fitted

M1: No-spatial analysis 

M2: Spatial without Nugget - AR1⊗AR1 

M3: Spatial with Nugget - AR1⊗AR1+ η

Goodness-of-fit Statistics

• CorPc: correlation between true and predicted clonal value

• 𝐻𝑐
2 broad-sense heritability (𝐻𝑐

2);

• logREML: Log Likelihood (LogREML);

• H2
PEV = 1 −

𝑃𝐸𝑉

𝜎𝑔
2 and h²PEV = 1 −

𝑃𝐸𝑉

𝜎𝑎
2

• SEF: Selection Efficiency 

• PM: True Genetic Gain



Sites with Nugget 

Designs Models logREML H²c H²PEV CorPc SEF40 PM40 

AD6.25 

M1 -490.32 0.503 0.507 0.711 71.1% 11.52 

M2 -465.42 0.552 0.612 0.736 73.6% 11.57 

M3 -460.15 0.499 0.544 0.740 74.0% 11.58 

AD12.5 

M1 -470.13 0.501 0.504 0.713 71.1% 11.50 

M2 -443.35 0.533 0.590 0.737 73.4% 11.55 

M3 -436.42 0.501 0.548 0.743 74.0% 11.56 

AD25 

M1 -425.56 0.494 0.498 0.711 71.0% 11.45 

M2 -395.66 0.514 0.567 0.738 73.7% 11.51 

M3 -386.28 0.493 0.542 0.744 74.3% 11.52 

DR 

M1 -437.55 0.499 0.660 0.817 81.8% 11.76 

M2 -396.98 0.506 0.713 0.840 83.8% 11.81 

M3 -384.62 0.497 0.705 0.845 84.6% 11.82 

Sites without Nugget 

Designs Models logREML H²c H²PEV CorPc SEF40 PM40 

AD6.25 

M1 -481.43 0.493 0.503 0.719 72.4% 11.55 

M2 -381.78 0.488 0.652 0.821 82.2% 11.76 

M3 -381.54 0.478 0.637 0.821 82.2% 11.76 

AD12.5 

M1 -460.42 0.500 0.509 0.718 72.3% 11.52 

M2 -343.55 0.496 0.672 0.826 82.9% 11.75 

M3 -343.31 0.491 0.663 0.826 82.8% 11.75 

AD25 

M1 -415.93 0.496 0.505 0.719 71.9% 11.47 

M2 -261.13 0.490 0.684 0.837 83.6% 11.71 

M3 -260.90 0.487 0.680 0.837 83.6% 11.71 

DR 

M1 -434.64 0.497 0.654 0.818 81.7% 11.76 

M2 -204.60 0.493 0.811 0.914 91.3% 11.97 

M3 -204.36 0.491 0.808 0.914 91.3% 11.97 
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EXTENSION TO MORE REPLICATIONS

CorPc



INCORPORATING PEDIGREE

o Why worry about the pedigree in genetic analyses?

o Statistically, random genetic effects (i.e. BLUPs) are not independent and 

their matrix of correlations or co-variances (G or A) needs to be specified.

o Genetically, it is important to consider information about relatives as they 

will share some alleles, and therefore their response is correlated.

o How to incorporate this information?

o Genetic relationships can be calculated using genetic theory (expected 

values) or molecular information (e.g. SNPs), and included into the linear 

mixed model by specifying a pedigree file, 



Example

Pedigree of a group of individuals P-BLUP
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𝐲 = 𝐗𝛃 + 𝐙𝐚 + 𝐞

a ~ MVN(0, G), G = σa
2A

e ~ MVN(0, R), R = σ2In



MATERIALS AND METHODS
Simulations for Breeding Value Estimation

• Same field conditions as before: 1,024 plots (64 rows x 16 columns)

• Incorporation of pedigree information.

• Breeding values (circular diallel with 42 parents – 64 families)

• 2 scenarios: E1 (h² = 0.40, d² = 0.05 and i2 = 0.05) and 

E2 (h² = 0.20, d² = 0.15 and i² = 0.15)

𝒚 = 𝟏µ + 𝑿𝜷 + 𝒁𝟏𝒃 + 𝒁𝟐𝒂 + 𝒁𝟑𝒇 + 𝒁𝟒𝒄 + 𝒆

Designs

# Plots #Family
# 

BlocksControl Test Families
Clones per 

family

AD6.25 64 960 64 15 8

AD25 256 768 64 12 8

DR 0 512 64 8 2



Scenario E1 

Designs Models logREML h² d² i² d²+i² H²c h²PEV CorPa SEF40 PM40 

AD6.25 

M1 -413.477 0.403 - - 0.102 0.505 0.569 0.748 73.9% 11.56 

M2 -379.623 0.401 - - 0.165 0.566 0.592 0.760 75.1% 11.58 

M3 -372.732 0.402 - - 0.098 0.500 0.593 0.762 75.3% 11.58 

AD25 

M1 -366.454 0.400 - - 0.096 0.496 0.560 0.742 72.9% 11.47 

M2 -327.722 0.399 - - 0.116 0.515 0.583 0.754 74.1% 11.49 

M3 -316.959 0.400 - - 0.092 0.491 0.587 0.757 74.5% 11.49 

DR 

M1 -386.214 0.392 0.062 0.043 0.105 0.497 0.607 0.788 77.7% 11.66 

M2 -341.244 0.392 0.061 0.053 0.114 0.506 0.630 0.801 79.1% 11.69 

M3 -328.288 0.392 0.060 0.045 0.105 0.496 0.635 0.804 79.5% 11.69 

Scenario E2 

Designs Models logREML h² d² i² d²+i² H²c h²PEV CorPc SEF40 PM40 

AD6.25 

M1 -453.743 0.251 - - 0.250 0.501 0.472 0.627 61.7% 11.31 

M2 -425.080 0.250 - - 0.313 0.562 0.488 0.635 62.6% 11.32 

M3 -418.964 0.252 - - 0.248 0.501 0.491 0.636 62.8% 11.33 

AD25 

M1 -399.221 0.246 - - 0.250 0.496 0.455 0.616 60.6% 11.23 

M2 -364.351 0.243 - - 0.274 0.517 0.470 0.626 61.5% 11.25 

M3 -354.502 0.245 - - 0.250 0.495 0.474 0.628 61.7% 11.25 

DR 

M1 -413.458 0.205 0.148 0.146 0.294 0.499 0.405 0.648 63.5% 11.38 

M2 -370.898 0.203 0.147 0.155 0.302 0.506 0.416 0.656 64.3% 11.39 

M3 -358.246 0.203 0.147 0.146 0.293 0.497 0.420 0.658 64.6% 11.40 

 

RESULTS





OBJECTIVES







OPTIMALITY CRITERIA



SIMULATION SCENARIOS



RESULTS: RCBD



RESULTS: UR and IB Designs



RESULTS: AUGMENTED Designs





o Construct prediction models using the current breeding population phenotype

and molecular markers capturing most of the quantitative variation.

Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1 Histograms of (a) the diagonal and (b) the off-diagonal elements of 

the raw estimates of the genetic relationship matrix, (c) the diagonal and (d) the off-diagonal 
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Genotypic data

Breeding Value (BV)  +

Model construction:

Molecular Markers
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Quantitative phenotypic data

eXβa +=



o Future individuals are genotyped, marker information is used as input on

prediction models to select superior genotypes in the next cycles:

βXa ˆˆ =

1 2 3 4
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GBLUP
• GBLUP replaces the pedigree-based relationship matrix A by the 

molecular-based relationship matrix GA

• It is equivalent to RR-BLUP but it can be used for complex data (e.g. MET).

o If the markers are capturing all genetic variation, then we can assume that:

o If we also assume:

o Then we get:

o An by scaling:

2)( Iβ =V

2)( mV X'Xa =

2

A

i

2

2
)( a

ii

a

qp
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GXX'a ==



βXa ˆˆ =

iii eay ++= 



• The numerator relationship matrix (A) is derived from pedigree.

• The realized relationship matrix (GA) is derived from molecular markers.

• GA is also known as observed relationship matrix or genomic matrix.
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MOLECULAR-BASED RELAT. MATRIX

𝐲 = 𝐗𝛃 + 𝐙𝐚 + 𝐞

PBLUP

a ~ MVN(0, G), G = σa
2A

e ~ MVN(0, R), R = σ2In

GBLUP

a ~ MVN(0, G), G = σa
2GA

e ~ MVN(0, R), R = σ2In



COMPUTING THE RELATIONSHIP MATRIX

where, 

{aG}jk is the genomic additive relationship coefficient corresponding to 

individuals j and k, 

M is the number of markers, 

gij and gik are the numeric genotypic values of individual j and k at marker i

pi is the frequency of allele with numeric value of 1 at marker i. 

Coding gij:

AA → 0, AC → 1, CC→ 2



STRAWBERRY BREEDING PROGRAM  

UNIVERSITY OF FLORIDA

- Established in 1964

- Main traits: 

- Fruit size

- Total yield

- Early yield

- Culling

- Sugar content (Brix) 

- Disease resistance

- Interest in implementing 

Genomic Selection



Objectives

• Explore different GS models for 
some of the most important traits 
in strawberry. 

• Use and evaluate cross-validation
and true-validation for prediction. 

• Refine a breeding strategy that 
incorporates GS.

• Evaluate alternatives to improve 
the predictability of GS.



2013 2014 2015 2016

Seedlings Seedlings Seedlings Seedlings

Adv. Sel. Adv. Sel. Adv. Sel. Adv. Sel.

Cross Cross Cross Cross

T1

T2

T3

T4 T6

T7T5

T8

Breeding Strategy



Genotyping

• 17,479 markers were used in 

GS

• Markers with MAF < 5% 

were removed

• Markers with missing values 

> 5% were removed

• Missing marker data was 

imputed by using the average 

allele frequency

90K IStraw90 Axiom®  SNP array

Affimetrix & RosBREED  

(Bassil and Davis et al. 2015)

Marker Quality 

Control



Phenotyping

Measurements 
(per trial/season)

Traits No. Units

Marketable Yield   (TMY) 15 grams

Average Fruit Wt   (AWT) 15 grams

Early Marketable Yield (EMY) ~4 grams

Total Culls                (TC) 15 %

Brix                           (SSC)                    5 %



Genomic Prediction Methods

• General Model:  𝑦𝑖 = 𝑢 + σ𝑗=1
𝑝

𝑥𝑖𝑗 β𝑗 + 𝑒𝑖𝑗

• G-BLUP: assumes marker effects have identical variance 

➢Ag - GenoMatrix (Nazarian and Gezan, 2015), ASReml – R.

• Bayes B, Bayes C: markers have different variance effects

➢ Gaussian mixture distribution of SNP’s effects

(𝜋, 𝑑𝑓𝛽 , Sβ ).  BGLR (Perez and de los Campos, 2014) 

• Reproducing kernel Hilbert spaces (RKHS):

➢ It captures some non-additive effects. BGLR (Perez and de los 
Campos, 2014) 



• Predictions made using

“training population”

• Predictions checked on 

“validation population” 

(independent breeding 

families)

Genomic Prediction Model

𝑦𝑖 = 𝑢 +

𝑗=1

𝑝

𝑥𝑖𝑗 β𝑗 + 𝑒𝑖𝑗



Comparison of GS Methods

• 5-fold Cross-validation: Test data was randomly 

divided in 2 sets of data

➢ Predictive Ability: 𝑐𝑜𝑟𝑟(𝑦, ො𝑦)

• True-validation: Training and validation populations 

are from different tests

➢Predictive Ability: 𝑐𝑜𝑟𝑟(𝑦, ො𝑦)

➢Efficiency of Selection: ො𝑦𝑖𝑛𝑐/ො𝑦𝑐𝑜𝑚

➢Accuracy of selection: 𝑐𝑜𝑟𝑟(𝑔, ො𝑔) =
𝑐𝑜𝑟𝑟(𝑦, ො𝑦)

ℎ



Predictive Ability (T2-T4)

Trait PBLUP
GS Models

GBLUP Bayes B Bayes C RKHS

AWT 0.444 0.490 0.494 0.488 0.515

SSC 0.371 0.427 0.438 0.436 0.451

TMY 0.238 0.306 0.353 0.337 0.333

TC 0.139 0.320 0.350 0.352 0.318

𝑐𝑜𝑟𝑟(𝑦, ො𝑦)

AWT: average weight; SSC: soluble solids content; 

TMYL total marketable yield; TC: total percent culls.



Prediction Accuracy (T2-T4)

Trait PBLUP
GS Models

GBLUP Bayes B Bayes C RKHS

AWT 0.549 0.606 0.610 0.603 0.636

SSC 0.630 0.725 0.744 0.740 0.766

TMY 0.507 0.652 0.753 0.718 0.710

TC 0.159 0.365 0.400 0.402 0.363

𝑐𝑜𝑟𝑟(𝑔, ො𝑔) =
𝑐𝑜𝑟𝑟(𝑦, ො𝑦)

ℎ

AWT: average weight; SSC: soluble solids content; 

TMYL total marketable yield; TC: total percent culls.



Predictive Ability for Cross- and True-Validation

of AWT by RKHS

Year 

2013

Year 

2014

Training population Validation population

0.60

0.58

0.54

0.44

T1 T2

T3 T4

0.59

0.46

0.43

0.40

𝑐𝑜𝑟𝑟(𝑦, ො𝑦)



Predictive Ability for Cross Validation 

and True Validation of AWT

Year 

2013

Year 

2014

Training 

population

Validation 

population

0.54

0.44

T2 (Stage 2 -2013)

0.49T4 (Stage 2 -2014)

𝑐𝑜𝑟𝑟(𝑦, ො𝑦)



Conclusions

• The predictive ability of the studied traits was similar across the 

different GS methods (Bayes B slightly better).

• Prediction accuracy was high (>0.60) for all models and traits 

except for TC.

• The ability to predict phenotypic performance is linearly related 

to the heritability of the trait.

• The efficiency of selection was high (>83%) for prediction of 

T4 based on T2.

• GxY has an important influence on the efficiency of GS

• Thanks LMM!





Additive + Dominance Model

β vector of fixed effects 

a vector of random additive effects (i.e. BV), ~ N(0, GAσ2
a)

d vector of random dominance effects, ~ N(0, GDσ2
d )

e vector of random residual effects, ~ N(0, Iσ2) 

edZaZXβy 21 +++=
iiii eday +++= 

Note: 

• The variance-covariance matrix GA and  GD are derived from 

molecular markers.



• Additive Relationship Matrix (GA)

• Dominance Relationship Matrix (GD)

GENOMIC MATRICES



Prediction Accuracies Using GBLUP and Two Genetic 

Models (A and AD) on True-Validation
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POPULATION SIMULATION FOR A+D

• Five chromosomes, each of 100 cMorgan in length, with 1,100 

polymorphic variants (1,000 markers and 100 QTLs) distributed across 

each chromosome.

▪ A total of 20 subsets were randomly selected from the base population,
each containing 100 males and 100 females (G1 population) to generate
a total of 300 full-sib families (10 offspring per family).

▪ Phenotypic values were assigned to G2 individuals as the summation of
population mean (supposed to be 100), additive genetic effects,
dominance genetic effects, and residual error.

▪ Different scenarios were considered:

Scenario h2 d2 σ2
a σ2

d σ2
e

1 0.4 0 1 0 1.5

2 0.4 0.1 1 0.25 1.25

3 0.4 0.4 1 1 0.5

𝑦𝑖 = 𝜇 + 𝑎𝑖 + 𝑑𝑖 + 𝑒𝑖



SIMULATION STUDY
Additive, Dominance and Genetic Values Correlations

Model
Additive Values Correlation Dominance Values Correlation Genetic Values Correlation

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Full Datasets

A 0.756 0.735 0.697 - - - 0.756 0.771 0.862 

AG 0.789 0.770 0.728 - - - 0.789 0.784 0.817 

A+D 0.756 0.736 0.701 - 0.348 0.653 0.755 0.776 0.903 

AG+D 0.787 0.768 0.726 - 0.343 0.650 0.789 0.802 0.906 

AG+DG 0.788 0.769 0.730 - 0.321 0.592 0.791 0.799 0.881 

AG+DG* 0.788 0.769 0.730 - 0.321 0.592 0.791 0.799 0.881 

Partial Datasets

A 0.736 0.717 0.687 - - - 0.736 0.758 0.861 

AG 0.750 0.734 0.703 - - - 0.750 0.759 0.827 

A+D 0.736 0.717 0.689 - 0.340 0.646 0.734 0.760 0.899 

AG+D 0.748 0.732 0.701 - 0.338 0.644 0.749 0.771 0.901 

AG+DG 0.748 0.733 0.703 - 0.325 0.610 0.750 0.771 0.886 

AG+DG* 0.748 0.733 0.703 - 0.325 0.610 0.750 0.771 0.886 

Validating Datasets

A 0.586 0.563 0.526 - - - 0.586 0.544 0.496 

AG 0.631 0.620 0.588 - - - 0.631 0.597 0.551 

A+D 0.586 0.563 0.526 - 0.154 0.255 0.585 0.543 0.511 

AG+D 0.629 0.618 0.585 - 0.155 0.259 0.631 0.599 0.569 

AG+DG 0.630 0.618 0.589 - 0.149 0.247 0.629 0.599 0.568 

AG+DG* 0.629 0.618 0.589 - 0.149 0.247 0.629 0.599 0.568 



s vector of fixed environment effects (e.g. year or site)

β vector of fixed design effects (e.g. replicates)

βs vector of fixed design effects within year

b vector of random design effects (e.g. blocks, plots), ~ N(0, Iσ2
b)

bs vector of random design effects within year (e.g. blocks, plots), ~ N(0, D)

as vector of random animal effects nested within year , ~ N(0, GAU)

e vector of random residual effects, ~ N(0, R)

easZbZβXsXy s1s ++++= 321
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AWT EMY SSC TC TMY
T2 0.39 0.15 0.34 0.21 0.18
T4 0.37 0.18 0.36 0.30 0.20
T6 0.36 0.23 0.33 0.19 0.30

Combining additional sources of information (to T8)

• GBLUP: - Combine additional year for analyses

• BayesB: - One-to-one predictions (average of indep. predictions)

AWT EMY SSC TC TMY
T2 0.39 0.15 0.34 0.21 0.18

T2+T4 0.41 0.20 0.39 0.29 0.22
T2+T4+T6 0.43 0.23 0.40 0.30 0.28

AWT: average weight; SSC: soluble solids content; 

TMYL total marketable yield; TC: total percent culls; 

EMY: early marketable yield.





Experiment Traits

- 534 Atlantic salmon (offspring). - Body weight (g) 

(yield)

- 59 nuclear families - Number of lice attached (disease)

- 90 parents

- Fish challenged with sea lice (L. salmonis)

The pedigrees of the fish were identified using PIT-tagging, and an adipose fin clip 

of each fish was collected for DNA extraction.

Molecular Data

- All samples were genotyped using the Affymetrix Axiom 132 K Atlantic salmon 

SNP chip.

- A final set of 78,362 SNP markers from a total of 624 fish was available.
Tsai, H-Y. et al. (2017). Genes | Genomes | Genetics 6:1313-1326

Atlantic Salmon



MATERIAL AND METHODS

• Selecting a random set of markers from the complete set of 
78,362 markers (m = 10).

• Number of markers: 100, 400, 700, 3000, 10000, 78362

• Obtain genomic matrix GA

• Fit an animal model (GBLUP) with GA or A.

• Evaluate a blending by using:

• Evaluation using cross-validation. 

GA*= (1 ˗ p)×GA + p×A



Body Weight

Number Sea Lice

# SNPs p* logREML h2 h2
CV PA ACC acorr 

- Ped 1016.2 0.494 0.493 0.397 0.566 0.658 

100 0.00 996.6 0.232 0.225 0.268 0.564 0.463 

400 0.00 1012.0 0.401 0.398 0.378 0.602 0.650 

700 0.00 1015.7 0.424 0.427 0.392 0.600 0.683 

3,000 0.00 1022.3 0.532 0.520 0.434 0.601 0.745 

10,000 0.00 1024.4 0.567 0.550 0.439 0.593 0.758 

All 0.00 1025.7 0.581 0.562 0.449 0.599 0.766 

100 0.81 1018.6 0.546 0.544 0.414 0.562 0.683 

400 0.64 1020.0 0.556 0.547 0.415 0.562 0.698 

700 0.56 1021.2 0.550 0.544 0.434 0.588 0.724 

3,000 0.38 1024.6 0.607 0.587 0.454 0.593 0.759 

10,000 0.28 1025.5 0.607 0.593 0.443 0.575 0.757 

All 0.25 1026.4 0.622 0.611 0.458 0.586 0.772 

 

RESULTS

# SNPs p* logREML h2 h2
CV PA ACC acorr 

- Ped 310.7 0.299 0.301 0.278 0.507 0.741 

100 0.00 300.8 0.119 0.123 0.156 0.448 0.522 

400 0.00 305.6 0.200 0.201 0.232 0.520 0.708 

700 0.00 305.5 0.209 0.206 0.237 0.524 0.740 

3,000 0.00 307.5 0.233 0.234 0.248 0.512 0.790 

10,000 0.00 308.0 0.242 0.242 0.253 0.515 0.800 

All 0.00 308.2 0.250 0.260 0.240 0.472 0.798 

100 0.96 310.8 0.304 0.302 0.277 0.505 0.744 

400 0.86 311.0 0.308 0.308 0.288 0.520 0.764 

700 0.90 310.8 0.306 0.305 0.278 0.503 0.752 

3,000 0.85 310.9 0.305 0.305 0.277 0.501 0.762 

10,000 0.81 310.9 0.306 0.300 0.299 0.546 0.787 

All 0.80 310.9 0.308 0.308 0.253 0.457 0.754 
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STATISTICAL CHALLENGES WITH GS

• Can we have a GS model that predicts total genetic value? 

g = a + d + i

• Partition genetics into more components from a LMM: 

G = A + D + A#A + A#D + D#D

• Use similarity matrices S for continuous and categorical data

AA → 0, AC → 1, CC→ 2 Additive coding

AA → 0, AC → 1, CC→ 0 Dominance coding

AA → X, AC →Y, CC→ Z Categorical coding

• Incorporate some higher order interaction

• Evaluate other Machine Learning methods (e.g. NN)



STATISTICAL CHALLENGES WITH GS

• What to do with very large genomic GA matrices? 

• Mixed Model Equations are too dense!! (compared with A)

• We need computational and mathematical solutions!

Solution 1

• Use conditional normal distribution to ‘update’ breeding values.



STATISTICAL CHALLENGES WITH GS

• What to do with very large genomic GA matrices? 

Solution 2

• Generate sparse GA or GA
-1 with minimum loss of information.



STATISTICAL CHALLENGES WITH GS

• What to do with very large genomic GA matrices? 

Solution 3

• Use shrinkage and/or matrix blending on top of sparse options.

Shrinkage (Powell et al. 2010)

𝑎𝐺𝑎𝑑𝑗 𝑗𝑘
= (1 −

ൗ1 𝑀
𝑣𝑎𝑟 𝑎

) 𝑎𝐺𝑗𝑘 − 𝑎𝑗𝑘 + 𝑎𝑗𝑘

Blending

GA*= (1 ˗ p)×GA + p×A



STATISTICAL CHALLENGES WITH GS

• What to do with missing values in the molecular matrix? 

Solution

• Imputation?

• Ignore missing values?



STATISTICAL CHALLENGES WITH GS

• How do we combine pedigree- and molecular-based relationship 

matrices? A vs. GA

Solution

• Use of the H-1 matrix instead of the A-1!

• Not as simple, as A22 and G-1 come from different ‘populations’.



STATISTICAL CHALLENGES WITH GS

• How do we combine pedigree- and molecular-based relationship 

matrices? A vs. GA



STATISTICAL CHALLENGES WITH GS

• How do we combine pedigree- and molecular-based relationship 

matrices? A vs. GA

Solution

• Some pedigree-based adjustments might be required for p (or 1-p).



STATISTICAL CHALLENGES WITH GS

• What to do with a non-positive definitive GA matrix?

Solution 1

• Make it a positive definite (PD) and therefore invertible matrix!

– Use iterative or non-iterative Bending (minimum accepted eigenvalue)

– Blend the matrix: 

Solution 2

• Absorb singularities within the Mixed Model Equations (ASReml-

SA).

GA*= (1 ˗ p)×GA + p×A



A FEW MORE CHALLENGES WITH GS

• How to obtain the GA matrix for polyploids?

• How do we combine QTL analysis with GS into a single 

analysis?

• Can we really combine different batches of molecular data?

• How do we prepare for very- very large molecular matrices?



QG ANALYSES
• Understanding of the genetic architecture is critical to any breeding 

program as it defines the Breeding Strategy

• Relevant information includes:

o Genetic control (additive, dominance, epistasis).

o Genotype-by-Environment (GxE).

o Genotype-by-Year (GxY). 

o Trait-to-trait correlations. 

o Temporal correlations. 

o Spatial correlations.

o Efficiency of Pedigree- or Molecular-based analyses.

• All of these require parameters estimated by Linear Mixed Models. 



SUMMARY

• LMM applications in breeding has become a reality with lots of 

benefits.

• These are exciting times to exploit LMMs and make breeding 

programs more efficient!

• These are very exciting times to incorporate molecular data and 

develop new tools for many biological systems (plants, animals and 

humans!)

• Software and computers have allow us to perform many of these 

analyses in an flexible, fast and accurate way.
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