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Breeders Equation

RGG =
iσg r

t

I RGG: Rate of Genetic Gain

I i : selection intensity

I σ2g : genetic variance of trait (yield)

I r : accuracy of selection - the correlation between the true and
predicted genetic effects. Note that r2 is the reliability (Mrode
1995)

I t : generation interval
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Breeders Equation

RGG =
iσg r

t

I For fixed i , σ2g and t, an increase in the accuracy of EBLUPs
increases the RGG

I This requires implementing procedures that are (and remain)
best practice

I We can contribute statistically by
I Optimal experimental design
I Appropriate construction of a MET dataset (contemporary

groups, co-located trials, etc.)
I Sophisticated analysis of the dataset (Smith et. al. 2014)
I Summary and dissemination of results (selection tools (Smith &

Cullis 2018), etc.)
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p-rep Designs

I Since Cullis et. al. (2006), adoption of p-rep designs in plant
breeding and crop research has replaced traditional grid-plot
designs

I The 25% p-rep threshold advocated by Cullis et. al. (2006)
was based on the ratio of test plots to grid plots in traditional
grid-plot designs

I Cullis et. al. (2006) stated “At present pedigrees are not
generally used in routine analyses of EGVTs”

I From 2017 we incorporated pedigree data in MET analysis of
PBA breeding programs
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Pedigree p-rep designs

I Historically, the design of PBA early generation variety trials
(EGVT) were generated in-house using DiGGer (Coombes
2002)

I From 2017 we transitioned to od (Butler & Cullis 2018) and
exploited known genetic relationships for the allocation of
varieties to both plots and sites

I This gives rise to two areas of research
I Is the 25% level of p-rep necessary to achieve a given level of

accuracy (r)
I Is there an advantage to using pedigree information in the

design of EGVT
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Outline of the simulation study

I A simulation study was designed to primarily investigate
I Various levels of p-rep
I The advantage (if any) of including pedigree information

in the design of the PBA Southern Faba Bean S1 trial that
consisted of 256 breeding lines and 4 check varieties

I The random component of the linear mixed model for the
analysis of a single PBA trial is:
random ∼ vm(Line, A) + ide(Line) + Block + Column + Row

residual ∼ ar1(Column) : ar1(Row)

I Where A is the (pedigree derived) relationship matrix

I Variance parameters: σ2g = āσ2a + σ2i , σ2b, σ2c , σ2r , ρc and ρr

8/20



Outline of the simulation study

I Simulation treatment factors
I 7 levels of p-rep: p = 0, 5, 10, 15, 25, 50, 100%
I 3 levels of proportion of additive genetic variance to the total:

k = 0.5, 0.7, 0.9
I 3 levels of null (baseline) reliability: r20 = 0.33, 0.5, 0.66
I 3 design types d = odod , odgg , odα

I odod od design with pedigree information included Butler and
Cullis (2018)

I odgg DiGGer style row-column design Coombes (2002)
I odα augmented α design for single site Williams et. al. (2011)

I 7× 3× 3 = 63 treatments {T} × 3 designs
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Outline of the simulation study

I For each {Ti} generate n=4000 datasets

I Values of non-genetic variance components chosen from
previous analyses of data

I σ2a and σ2i chosen to realise pre-specified values of r20 for a
design with no replication and sub-optimal allocation of
varieties to plots

I T(id)j → the j th simulation allocated to plots by design strategy
d
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Outline of the experiment

designs

I With reference to the LMM used for analyses, the following
indicates a) if a term was fitted and b) whether it was fitted as
fixed or random for each of the three design types d

Term odod odgg odα
Line F F
Additive R
Non-Additive R

Block R R F
Column R R
Row R R
Column:Row (Plot) R R
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Simulations

I The simulated data from each {T(id)j} were analysed in
ASReml-R, Butler et. al. (2018).

I For Ti we have
ug ,ua,ui

and for T(id)

ũgd , ũad , ũid

For d in {odod , odgg , odα}, where each u is of length 260.
I Summarise

I Bias associated with variance parameter estimates for each
design method d for the 63 combinations of p, k and r20

I Correlation between the “true” (simulated) value and
corresponding predicted value for for each design method d and
63 combinations of p, k and r20
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Correlation between true

and predicted: Total

I There is little to no distinction between the performance of
odgg and odα allocations for any level of p, k , and r20 for total
correlations

I This suggests that spatial models (i.e. fitting AR1×AR1 to the
residual) are not as critical in the design of trials such as these

I As k increases for fixed p and r20 the advantage of odod to odgg
and odα designs increases

I For fixed r20 and p, as k increases, the total correlation
decreases as the bias associated with the non-additive genetic
variance increases
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Correlation between true

and predicted

I For k = 0.7 and r20 = 0.3

I Using pedigree information, we can reduce the level of p and
still maintain the same level of accuracy as other allocations in
this situation.

Design 0 5 10 15 25 50 100

odα 0.370 0.396 0.411 0.421 0.440 0.482 0.532
odgg 0.369 0.391 0.408 0.418 0.440 0.481 0.534
odod 0.386 0.412 0.430 0.443 0.464 0.502 0.553
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Conclusions

I There is still recovery of information for p=0?!

I BUT the bias of variance parameter estimation for low p is large

I Bias associated with σ2i particularly large

I Bias associated with σ2g significantly affected by the bias with
σ2i (if it is large) ∀k
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Conclusions

I For each level of p and across all levels of k and r20
I odod achieved the highest accuracy of prediction out of all three

design strategies
I odod had the lowest design criterion (A-value) i.e. smallest

average pairwise variance of variety contrasts

I For all combinations of p and r20
I odod achieves a given level of accuracy with smaller p than odgg

and odα

I odod is the best design strategy for the true model

I It can be shown the A value is proportion to the expected level
of accuracy of the predictions in the subsequent analysis

16/20



Conclusions

I Is the 25% level of p-rep the gold-standard for EGVTs?
I No... however, this is up to the discretion of the breeder taking

into account
I cost($)/plot i.e. how large can the trial be
I desired level of accuracy
I population diversity (σ2

g ) and proportion (k) of additive genetic
variance

I Is there an advantage to using pedigree data in the design of
EGVTs?

I Yes... results indicate for every level of p and all combinations
of k and r20

I the accuracy of the predicted values and
I relative response to selection (not presented today) are higher

for allocations using odod compared to odgg and odα designs
(Cullis et. al. in prep.)
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