#### Instrumental variables estimation in the Cox Proportional Hazard regression model

James O'Malley, Ph.D. Department of Biomedical Data Science The Dartmouth Institute for Health Policy and Clinical Practice Lebanon, NH James.OMalley@Dartmouth.edu

#### Acknowledgements:

P. Martinez-Camblor, T.A. MacKenzie, D.O. Staiger and P.P. Goodney Patient-Centered Outcomes Research Institute (PCORI) Award ME-1503-28261

#### Motivation: Comparative Effectiveness in Vascular Surgery

- Condition: Carotid artery disease, risk factor for stroke and death
- Treatments: Carotid endarterectomy (CEA) vs. carotid stenting (CAS)
- Outcome: Time until death (any cause)
- Setting: Daily clinical practice
- Modeling requirement: Use Cox proportional hazards regression model due to the limited assumptions it makes and its popularity

#### **Observational Study**

- Detailed clinical data from the Vascular Quality Initiative (VQI) linked to long-term outcome data from Medicare
- www.vascularqualityinitiative.org

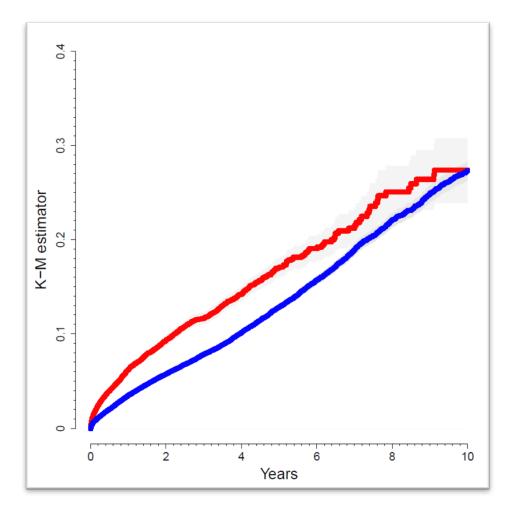


 A total of 86,017 patients (between 2013-2016) contributing 259,700.2 patient-years (follow-up 3.02±2.36)



|          | CEA           | CAS          |  |  |
|----------|---------------|--------------|--|--|
|          | N=73,312      | N=12,705     |  |  |
| Age      | 70.3±9.4      | 69.1±10.4    |  |  |
| Male (%) | 44,191 (60.4) | 8,117 (63.9) |  |  |

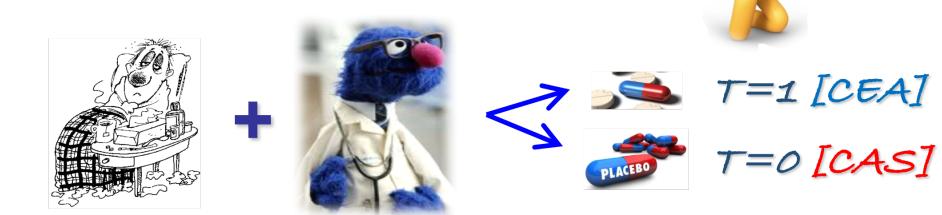
#### Raw Outcome Data: Kaplan Meier Estimates



|              | Events/Exposure | Hazard-ratio of<br>CEA to CAS<br>(95% CI) |
|--------------|-----------------|-------------------------------------------|
| Overall      |                 |                                           |
| CEA          | 6,600/73,312    | 0.67 (0.64-0.71)                          |
| CAS          | 1,405/12,705    |                                           |
| Symptomatic  |                 |                                           |
| CEA          | 2,559/28,689    | 0.61 (0.56-0.66)                          |
| CAS          | 786/6,825       |                                           |
| Asymptomatic |                 |                                           |
| CEA          | 4,017/44,395    | 0.76 (0.70-0.83)                          |
| CAS          | 607/5,809       |                                           |

#### Can we infer causality?

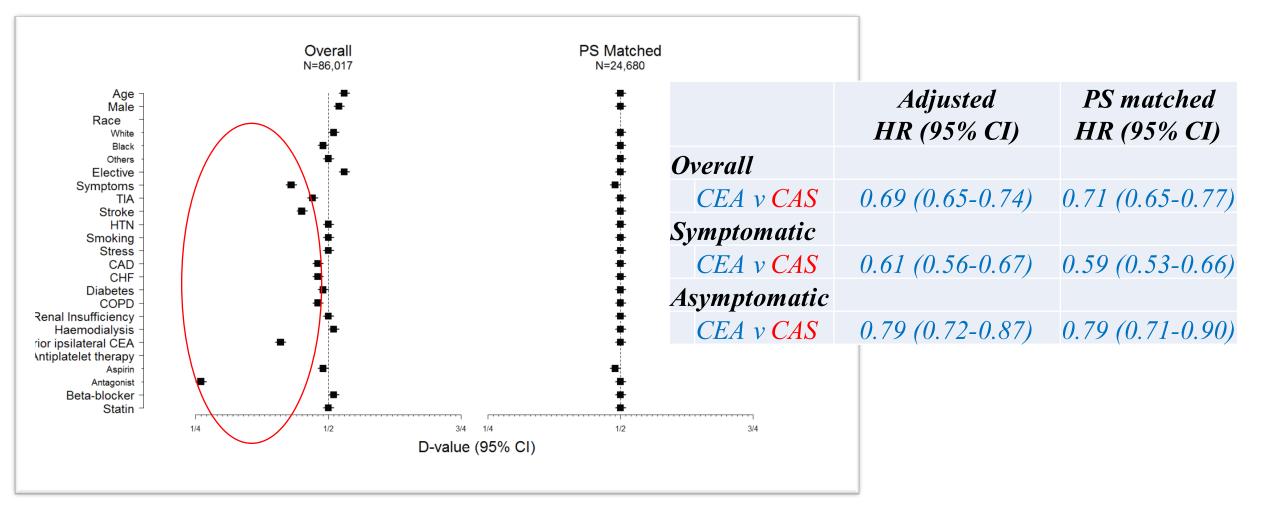
## Was treatment decided at random?



5

#### Adjusted Analyses of VQI data

• Well known methods: Regression adjustment and propensity score analysis



#### **Unmeasured Confounding!**

Estimates based on regression and propensity score methods still only yield **ASSOCIATIONS** 

#### Because,

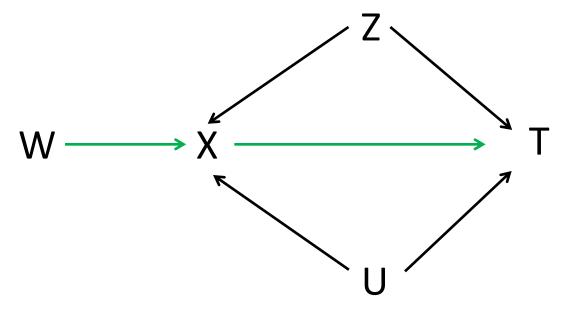


#### What happen with the UNMEASURED confounders ???!!

### Accounting for Unmeasured Confounding: Instrumental Variables

- Key analytic variables:
  - T = survival time
  - X = treatment (=1 if CEA, 0 if CAS)
  - Z = observed confounders
  - U = unobserved confounders
- W is an instrumental variable (IV) if:
  - 1. W predicts X conditional on (Z, U)
  - 2. W is independent of U conditional on Z
  - 3. W is independent of T conditional on (X, Z, U)
- Use Directed Acyclic Graphs (DAGs) to test IV conditions (Brito and Pearl 2002)

#### Directed Acyclic Graph (DAG) for Instrumental variable analysis with no censoring

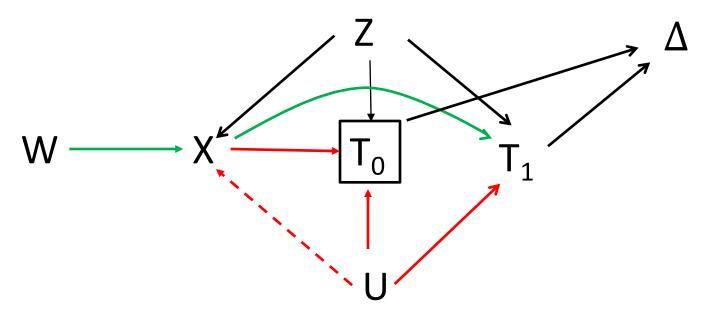


- T = (Transformed) survival time
- X = Treatment
- W = Instrumental variable (IV)
  - Extracts good variation in X; avoids conditioning on X
- Z = Observed confounders
- U = Unobserved confounders

#### Accounting for censoring and hazard ratios!

- The survival time T may only be known to exceed a given value, denoted C
  - C is referred to as the censoring time
- Observe  $T_{obs} = \min(T, C)$  and  $\Delta = I(T \leq C)$
- Cannot condition on  $\Delta$  to account for censoring!
- Furthermore, at-risk sample becomes increasingly selective with followup time (Hernan et al 2004)
  - (W, U) associated after conditioning on Z even if X has no effect on T
- We need an IV procedure that works with the Cox regression model

# The Cox survival model and its estimation of Hazard-Ratios add further twists!



- T = (Transformed) survival time
- X = Treatment
- Z = Observed confounders
- U = Unobserved covariates; not necessarily confounders
- W = Instrumental variable
- $\Delta$  = Whether observe survival time or censoring time

#### Methodological solutions

- Ignore unmeasured confounding
  - Sensitivity analysis to unmeasured confounder (e.g., Tchetgen Tchetgen and Robins 2012)
- Adaptation of existing IV methods to survival data
  - Two-stage least squares (Stukel et al 2007)
  - Two-stage predictor substitution
  - Two-stage residual inclusion (Terza et al 2008, Cai et al 2011, Gore et al 2011, Palmer 2013)
- Structural equation models (SEM) involving full parametric models (Choi and O'Malley 2015)

#### Cox Proportional Hazards (CPH) Model with Treatment selection

• The CPH survival time model is specified in terms of the instantaneous change in the survival probability across time:

$$\lambda(t) = -\frac{d}{dt} \log(\Pr(T > t|.)),$$

where Pr(T > t|.) is the probability of surviving to time t

• Survival time model:

 $\lambda(t|X_i, \boldsymbol{Z}_i, U_i) = \lambda_0(t) \exp(\beta_X X_i + \boldsymbol{\beta}_Z^T \boldsymbol{Z}_i + \beta_U U_i)$ 

• Treatment selection model:

$$X_i = \alpha_0 + \boldsymbol{\alpha}_W^T \boldsymbol{W}_i + \boldsymbol{\alpha}_Z^T \boldsymbol{Z}_i + \alpha_U U_i + \epsilon_i$$

#### Proposed IV Procedure for Cox Model

• Use ordinary least squares to compute the fitted values:  $\widehat{X}_{i} = \widehat{\alpha}_{0} + \widehat{\alpha}_{W}^{T} W_{i} + \widehat{\alpha}_{Z}^{T} Z_{i}$ 

and compute

$$\begin{aligned} \hat{R}_i &= X_i - \hat{X}_i \\ &= (\alpha_0 - \hat{\alpha}_0) + (\alpha_W - \hat{\alpha}_W)^T W_i + (\alpha_Z - \hat{\alpha}_Z)^T Z_i + \alpha_U U_i + \varepsilon_i \\ &\to \alpha_U U_i + \varepsilon_i = R_i \text{ in expectation} \end{aligned}$$

- Hints:
  - Want to control for  $\hat{R}_i$
  - Might better control for  $U_i$  if can separately account for  $\varepsilon_i$

#### Theory

• Under the Cox model

 $Pr(T_i \ge t | X_i, \mathbf{Z}_i, U_i) = exp\{-\Lambda_0(t) exp(\beta_X X_i + \boldsymbol{\beta}_Z^T \mathbf{Z}_i + \beta_U U_i)\}$ where  $\Lambda_0(t) = \int_0^t \lambda_0(t) dt$ 

- But if  $R_i = \alpha_U U_i + \varepsilon_i$  it follows that  $U_i = \alpha_U^{-1}(R_i \varepsilon_i)$  and  $Pr(T_i \ge t | X_i, R_i, \varepsilon_i) =$   $exp\{-\Lambda_0(t)\phi_i exp(\beta_X X_i + \beta_Z^T Z_i + \beta_U \alpha_U^{-1} R_i)\}$ where  $\phi_i = \exp(-\beta_U \alpha_U^{-1} \varepsilon_i)$
- Control for  $R_i$  (via  $\hat{R}_i$ ) and separately account for  $\varepsilon_i$  by including an individual frailty with an unrestricted scale to absorb the impact of  $\exp(-\beta_U \alpha_U^{-1} \varepsilon_i)$

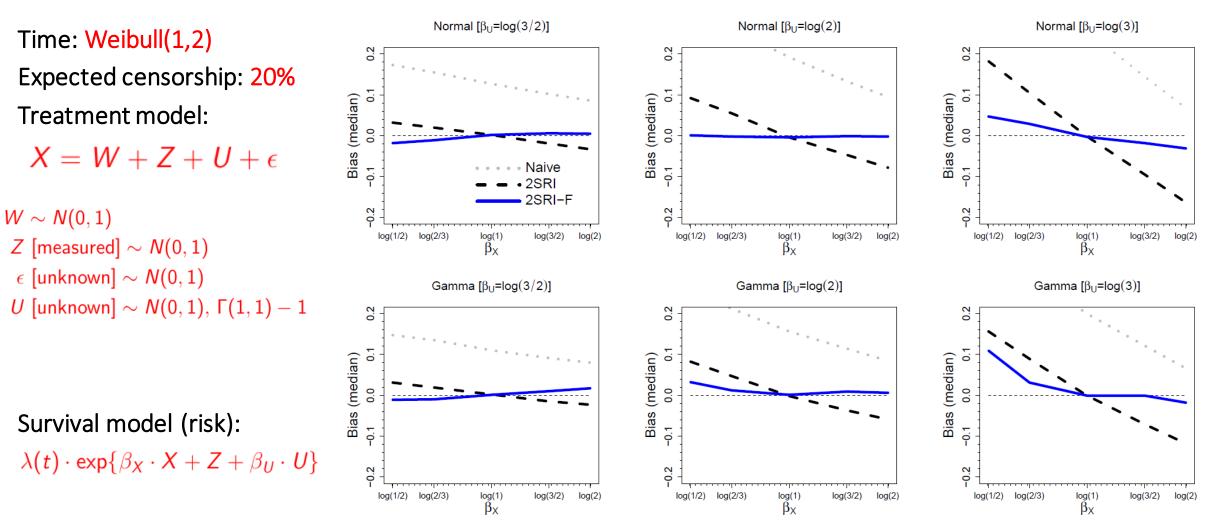
#### Second-stage procedure

• After computing  $\hat{R}_i$  estimate the Cox survival time model with an individual frailty given by:

 $\lambda(t|X_i, \mathbf{Z}_i, \hat{R}_i) = \lambda_0(t)\phi_i \exp(\beta_X X_i + \boldsymbol{\beta}_Z^T \mathbf{Z}_i + \beta_R \hat{R}_i)$ 

- Under standard regularity conditions this two-stage procedure yields a consistent estimator of  $\beta_X$
- The frailty makes the adjustment for  $\hat{R}_i$  more closely aligned with adjusting for  $U_i$
- Procedure generalizes the control function approach known as two-stage residual inclusion (2SRI) popularized by Terza et al (2008)
  - Acronym for procedure is 2SRI-F (F for Frailty)
- But need to specify the distribution of the individual frailty  $\phi_i \sim f(.)$ 
  - Most commonly f(.) is assumed to be a common distribution such as the lognormal or the gamma with unknown scale parameter

#### **Illustrative Monte Carlo Simulations**



#### Analysis of the VQI data

Estimate the **causal effect** of endarterectomy (CEA) vs. carotid stenting (CAS) on the time to death (any reason) of patients suffering from carotid artery disease who are treated in regular clinical practice

#### Instrumental Variable for VQI Data

Our IV (W) is the proportion of CEA procedures out the total number of surgeries **[CEA/(CEA+CAS)]** performed in the same hospital over the 12-months prior to the current surgery

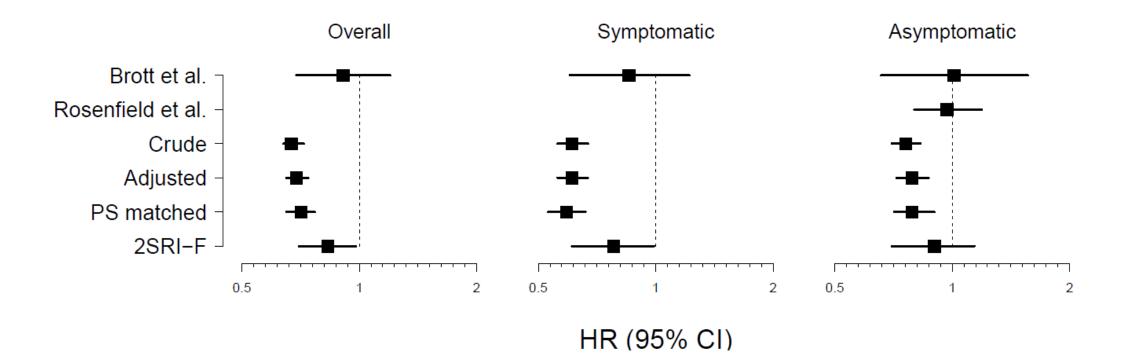
#### Justification?

- 1. W is strongly associated with treatment
- 2. W is independent of observed patient characteristics so might also be independent of unobserved confounders (?)
- 3. The relationship of W with time to death is only through the received procedure if any institutional learning/improvement is general as opposed to procedure specific (?)

#### Results: VQI data analysis

|              | Raw (unadjusted)<br>HR (95% CI) | Adjusted<br>HR (95% CI) | PS matched<br>HR (95% CI) | 2SRI-F<br>HR (95% CI) |
|--------------|---------------------------------|-------------------------|---------------------------|-----------------------|
| Overall      |                                 |                         |                           |                       |
| CEA vs CAS   | 0.67 (0.64-0.71)                | 0.69 (0.65-0.74)        | 0.71 (0.65-0.77)          | 0.83 (0.70-0.98)      |
| Symptomatic  |                                 |                         |                           |                       |
| CEA vs CAS   | 0.61 (0.56-0.66)                | 0.61 (0.56-0.67)        | 0.59 (0.53-0.66)          | 0.78 (0.61-0.99)      |
| Asymptomatic |                                 |                         |                           |                       |
| CEA vs CAS   | 0.76 (0.70-0.83)                | 0.79 (0.72-0.87)        | 0.79 (0.71-0.90)          | 0.90 (0.70-1.14)      |

#### **Results continued: Stratified Analyses**



### Forest-plots for the HRs obtained for two RCTs and the different models considered for the VQI data analyses

#### Conclusions

- 1. 2SRI-F: Consistent under theoretical assumptions
- Frailty term improves the results but does not remove "all" the bias in finite samples
  - R Cox-Frailty model routines are approximate
- 3. Easy to compute
- 4. Robust with respect the frailty distribution
- 5. VQI analysis shows coherence between 2SRI-F and RCTs
- 6. Methodology has been extended to allow:
  - An interaction effect involving the treatment
  - Non-proportional hazards

#### References

- Martinez-Camblor P, MacKenzie TA, Staiger D, Goodney PP, and O'Malley AJ. Adjusting for bias introduced by instrumental variable estimation in the Cox Proportional Hazards Model. Biostatistics, 2017. doi: 10.1093/biostatistics/kxx062. PMID: 29267847
- Choi J, O'Malley AJ. Estimating the Causal Effect of Treatment in Observational Studies with Survival Time Endpoints and Unmeasured Confounding. Journal of the Royal Statistical Society, Series C (Applied Statistics), 2017, 66, 159-185
- Columbo JA, Martinez-Camblor P, MacKenzie TA, Staiger DO, Kang R, Goodney PP, O'Malley AJ. Comparing Long-term Mortality After Carotid Endarterectomy vs Carotid Stenting Using a Novel Instrumental Variable Method for Risk Adjustment in Observational Time-to-Event Data. In Press: JAMA Network Open
- Martinez-Camblor P, MacKenzie TA, Staiger D, Goodney PP, and O'Malley AJ. An instrumental variable procedure for estimating Cox models with non-proportional hazards in the presence of unmeasured confounding. Under revision

#### Monte Carlo simulations: Binary treatment

