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The presence only problem



The presence only problem

• Information is only known about the presences
• The observed counts are only a subset of the population
• Often encountered in epidemiology, ecology, criminology etc
• It is problematic when we want to estimate population
prevalence/incidence

How can we account for this in our estimation procedure?

2



The Likelihood

The observed counts Y are only a subset of the true number infected
Z, from population N:

Z ∼ Binomial(N, λ)

Y ∼ Binomial(Z, ϕ)

f(Y|N, λ, Z, ϕ) =
∑
Z

(
N
Z

)
λZ(1− λ)N−Z

(
Z
Y

)
ϕY(1− ϕ)Z−Y

=

(
N
Y

)
(λϕ)Y(1− ϕλ)N−Y

Y ∼ Binomial(N, λϕ)
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The only way is Bayes!



Bayesian Hierarchical Models

Y ∼ Binomial(N, λ(X)ϕ(X))

λ(X) = exp{Xβ + ε}
1+ exp{Xβ + ε}

ϕ(X) = exp{Xα+ ε}
1+ exp{Xα+ ε}

• α and β are vectors of
regression coefficients

• ε is a spatial residual,
with CAR structure
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Posterior Distribution

The joint posterior distribution:

f(λ, ϕ|Y,N) ∝ f(Y|N, λ, ϕ)f(λ)f(ϕ).

The posterior distribution for Z:

f(Z|λ, ϕ, Y,N) =
∫ 1

0

∫ 1

0

(
N
Z

)
λZ(1−λ)N−Z

(
Z
Y

)
ϕY(1−ϕ)Z−Yf(λ)f(ϕ)dϕdλ.
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Simulation Studies



The Scenarios

Underlying Prevalence, λ(X):

β0 = {−6.7,−2}, β1 = {0, 2.5}

Detection ϕ:
ϕ = {0.7, 0.9}

Presence of spatial autocorrelation ε:

ε = {ε1, ε2}

with ε1 indicating spatial autocorrelation and white noise otherwise.

• covariates are considered only for λ
• ϕ is treated as an intercept only model.

In this 24 different scenarios were investigated.
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Priors

• β0, β1 ∼ N(0, 0.04)
• ϕ|ϕ = 0.9;α ∼ N(logit(0.9), 100)
• ϕ|ϕ = 0.7;α ∼ N(logit(0.7), 100)
• εij ∼ N(ε−j, τmj)

Identifiability

• Placing an informative prior on ϕ was necessary for
identifiability and convergence of the model
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Results

(a) β̂0|β0 = −2, β1 = 0 (b) β̂0|β0 = −2, β1 = 2.5

(c) β̂0|β0 = −6.7, β1 = 0 (d) β̂0|β0 = −6.7, β1 = 2.5

Figure 1: Caption
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Results

(a) β̂1|β0 = −2, β1 = 0 (b) β̂1|β0 = −6.7, β1 = 0

(c) β̂1|β0 = −2, β1 = 2.5 (d) β̂1|β0 = −6.7, β1 = 2.5

Figure 2: Caption
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Pennsylvania Lung Cancer Data
Set



Pennsylvania Lung Cancer Data Set

• Pennsylvania Lung Cancer Data available from the SpatialEpi
package in R.

• Comprises of lung cancer cases and population counts at the
county level, with n = 67.

• County-specific smoking rates.
• Population counts were obtained from the 2000 decennial
census

• Stratified on race (white vs non-white), gender and age (Under
40, 40-59, 60-69 and 70+).

For simplicity, we aggregated the data to county specific level only.
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Pennsylvania Lung Cancer Data Set: Results

(a) Observed Prevalence (b) Proportion of Smokers

(c) Predicted Prevalence (d) Predicted - Observed
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Conclusion and Future Work



Summary

• Can be used to estimate true population parameters
• Potential to uncover areas of under detection/ under reporting

Future Work

• Application to kidney stones data set
• Investigate the correlations between hierarchies
• Covariates on detection
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Questions?
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