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Introduction M step:
The M-step has two parts:
e Consider a questionnaire response, rows as the observations, columns as the questions. (1) Update the column cluster propotions using:
e Data 1s formed into a n X m matrix with - -
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e Response 1s all ordinal which has the same number of categories gq. (2) Numerically maximize the complete data log-likelihood:
e The suggested model adjacent-categories logit model is for ordinal response variables.
e Row clustering assumes rows are from /R number of clusters; column clustering assumes columns are from
’ X log )+ r. 1(y;; = k)log(6
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e The goal 1s to cluster rows into different clusters if it 1s row clustering; to cluster columns into different
clusters for column clustering; to cluster rows and columns simultaneously for bi-clustering. given I ;. from the E-step. We maximize Q(t> to obtain new values for the parameters u., 5.
¢ Finite mixtures are a successful way to do clustering analysis. A new cycle starts from using the parameters getting from the M-step in the E-step. This process repeats

until estimates have converged. There 1s a risk of convergence to local maxima due to multimodality on the

e Need to estimate the parameters for the model via EM algorithm [2]. S T &+ ,
P . likelihood surface, and thus it is important to use several initial values to start the EM algorithm.

Oridinal Data Row Clustering

e In statistics, a variable consists of an ordinal scale 1s called an ordinal variable [1]. e Row clustering is very similar to column clustering since they are both one-way clustering.

e Examples of ordinal variables: e Setting I? as the number of row clusters in our dataset. Each cluster with proportion 7, m9, ..., 7. We
e Family spending on food: high, medium, low assume the rows come from a finite mixture with /2 components where both /2 and 7, are all unknown. Note
e Degree: high school, college, undergraduate, master, PhD that £ < n and 27@:1 = 1.
e How often do people do exercise: never, rarely, occasionally, often o Let PY;; = kli € 1| = 0,1,
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Adjacent-categories logit models |
l,....n, 9=1,...m, r=1,....R, k=2,...,q,

.
]

e In this model, the probability that Y;; takes category £ is characterized by the following log odds:

PlYjj = kla;j] T Simulation
10g< J J )—Mk+5 €T,
PYij =k — 1| K
e A simplest adjacent-categories logit model has the form as follows:
v=1,....n, 7=1,....m, k=2,...,q,

PY, =k
The vector x;; 1s a set of predictor variables which can be categorical or continuous. However, the vector of log | | = U}, k=2,...,q
. : PlY; =k —1]
parameters o0 represents the effects of & on the log odds of the response variable for the category £ relative
to the category £ — 1 instead of the baseline category. We also restrict ;11 = 0 to be sure of identifiability. e Simulation results when the true parameter value yuo = 0.1, u3 = 0.3. The number of response in each

datasets 1s n, while the number of simulation datasets (replicates) is /V
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COlumn Cluste rin g n=50, N=50 n=50, N=100 n=50, N=500 n=50, N=1000 n=50, N=500 n=100, N=500 n=300, N=500 n=500, N=500

e Columns are assumed a priori to come from any of ¢ = 1,...,C column groups with probabilities
Ri,...,R{O.
e That is, we assume that the columns come from a finite mixture with C' components where both C' and the
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e Note also that C' < mand ) | { ke =1, and k. > 0. e , e e
elet P D/:L ] = k’] - C] = Hick, which means the probablhty that observation }/:L ] = k giVen that column ] n=50, N=50 n=50, N=100 n=50, N=500 n=50, N=1000 n=50, N=500 n=100, N=500 n=300, N=500 n=500, N=500

belongs to column-cluster c.
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e The adjacent-categories logit model with column clustering has the form:
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where ;. 1s the kth intercept, (3. is the cth column-cluster effect.

e Through some mathematical induction, we have:

Future Work
B e g+ (k=18 . . . L o . L
0,0 = PlY;i =k|j € ] = e Row clustering, column clustering and bi-clustering using adjacent-categories logit model via a finite mix-
J q * .
> =y oxp [y + (1= 1)Bc] ture model.

i=1,....n, c=1,....C, k=1,....q, e Use simulation study and heat maps to evaluate our proposed model on row/column clustering and biclus-

tering. Apply model selection methods such as AIC and BIC.
where 51 =0, 41 = 0, and

I e Evaluate and compare finite mixture clustering models and logistic regression models through an application
> = Z 1y, = po + pg + -+ . in Linguistics.
h=2 e Using randomised quantile residuals to construct a goodness-of-fit test for fuzzy clustering: Use X ;. as the

weight, then calculate the weighted randomised quantile residual:

C
Bi=Y" R
c=1

e Apply LASSO [4] on clustering and compare it with fuzzy clustering via finite mixtures. By solving the
quasi-likelihood equations such as GEE [3] subject to

e Assuming independence among the columns and, conditional on the columns, independence over the rows,
the likelihood with column-clustering becomes:

Estimation bv using EM algorithm m m
y 5 5 Z‘*{jh’ﬁj —Opl<s  and Zﬁj =0
j=1

We define the unknown column group memberships through the following indicator latent variables: j<h
Xje=1(jec) = { . lf] cc j=1,....m c=1,....C where wy, is the weight, 5; is the column effect of the jth column. If we have very similar values of Ej, we
0ifj & can merge them and cluster the corresponding columns into the same clusters.

where j € c indicates that column j is in column group c. It follows that:
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