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Introduction
• Consider a questionnaire response, rows as the observations, columns as the questions.

•Data is formed into a n×m matrix with

Yij = k, if individual i answered k on question j; k = 1, 2, . . . , q

• Response is all ordinal which has the same number of categories q.

• The suggested model adjacent-categories logit model is for ordinal response variables.

• Row clustering assumes rows are from R number of clusters; column clustering assumes columns are from
C number of clusters.

• The goal is to cluster rows into different clusters if it is row clustering; to cluster columns into different
clusters for column clustering; to cluster rows and columns simultaneously for bi-clustering.

• Finite mixtures are a successful way to do clustering analysis.

•Need to estimate the parameters for the model via EM algorithm [2].

Oridinal Data
• In statistics, a variable consists of an ordinal scale is called an ordinal variable [1].

• Examples of ordinal variables:

• Family spending on food: high, medium, low
•Degree: high school, college, undergraduate, master, PhD
•How often do people do exercise: never, rarely, occasionally, often

Adjacent-categories logit models
• In this model, the probability that Yij takes category k is characterized by the following log odds:

log

(
P [Yij = k|xij]

P [Yij = k − 1|xij]

)
= µk + δ

Txij,

i = 1, . . . , n, j = 1, . . . ,m, k = 2, . . . , q,

The vector xij is a set of predictor variables which can be categorical or continuous. However, the vector of
parameters δ represents the effects of x on the log odds of the response variable for the category k relative
to the category k− 1 instead of the baseline category. We also restrict µ1 = 0 to be sure of identifiability.

Column Clustering
• Columns are assumed a priori to come from any of c = 1, . . . , C column groups with probabilities
κ1, . . . , κC .

• That is, we assume that the columns come from a finite mixture with C components where both C and the
column-cluster proportions κc are unknown.

•Note also that C < m and
∑C
c=1 κc = 1, and κc ≥ 0.

• Let P [Yij = k|j ∈ c] = θick, which means the probability that observation Yij = k given that column j
belongs to column-cluster c.

• The adjacent-categories logit model with column clustering has the form:

log

(
P [Yij = k|j ∈ c]

P [Yij = k − 1|j ∈ c]

)
= µk + βc,

i = 1, . . . , n, c = 1, . . . , C, k = 2, . . . , q,

where µk is the kth intercept, βc is the cth column-cluster effect.

• Through some mathematical induction, we have:

θick = P [Yij = k|j ∈ c] =
exp
[
µ∗k + (k − 1)βc

]∑q
`=1 exp

[
µ∗` + (l − 1)βc

]
i = 1, . . . , n, c = 1, . . . , C, k = 1, . . . , q,

where β1 = 0, µ1 = 0, and

µ∗k =
k∑
h=2

µh = µ2 + µ3 + · · · + µk.

•Assuming independence among the columns and, conditional on the columns, independence over the rows,
the likelihood with column-clustering becomes:

L(Ω|Y) =

m∏
j=1

[

C∑
c=1

κc

n∏
i=1

q∏
k=1

(θick)
I(yij=k)]

Estimation by using EM algorithm
We define the unknown column group memberships through the following indicator latent variables:

Xjc = I(j ∈ c) =
{
1 if j ∈ c
0 if j /∈ c j = 1, . . . ,m c = 1, . . . , C

where j ∈ c indicates that column j is in column group c. It follows that:

C∑
c=1

Xjc = 1, j = 1, . . . ,m,

Given a value for the number of the mixture components C, the EM algorithm proceeds as follows:

E step:
Update x̂. Given Y and values for κc, µk, αr, estimate E[Xjc|{yij},Ω] = xjc as:

x̂
(t)
jc =

κ̂
(t−1)
c

∏n
i=1
∏q
k=1(θ̂

(t−1)
ick )I(yij=k)∑C

g=1[κ̂
(t−1)
g

∏n
i=1
∏q
k=1(θ̂

(t−1)
ick )I(yij=k)]

(1)

M step:
The M-step has two parts:
(1) Update the column cluster propotions using:

κ̂
(t)
c =

1

m

m∑
j=1

E[Xjc|{yij},Ω(t−1)] =
1

m

m∑
j=1

x̂
(t)
jc .

(2) Numerically maximize the complete data log-likelihood:

Q(t) =

m∑
j=1

C∑
c=1

x̂
(t)
jc log(κ̂

(t−1)
c ) +

n∑
i=1

m∑
j=1

q∑
k=1

C∑
c=1

x̂
(t)
jc I(yij = k) log(θick).

given x̂jc from the E-step. We maximize Q(t) to obtain new values for the parameters µk, βc.
A new cycle starts from using the parameters getting from the M-step in the E-step. This process repeats
until estimates have converged. There is a risk of convergence to local maxima due to multimodality on the
likelihood surface, and thus it is important to use several initial values to start the EM algorithm.

Row Clustering
• Row clustering is very similar to column clustering since they are both one-way clustering.

• Setting R as the number of row clusters in our dataset. Each cluster with proportion π1, π2, . . . , πR. We
assume the rows come from a finite mixture with R components where both R and πr are all unknown. Note
that R < n and

∑R
r=1 = 1.

• Let P [Yij = k|i ∈ r] = θrjk,

log

(
P [Yij = k|i ∈ r]

P [Yij = k − 1|i ∈ r]

)
= µk + αr,

i = 1, . . . , n, j = 1, . . .m, r = 1, . . . , R, k = 2, . . . , q,

Simulation
•A simplest adjacent-categories logit model has the form as follows:

log

(
P [Yi = k]

P [Yi = k − 1]

)
= µk, k = 2, . . . , q

• Simulation results when the true parameter value µ2 = 0.1, µ3 = 0.3. The number of response in each
datasets is n, while the number of simulation datasets (replicates) is N

Future Work
• Row clustering, column clustering and bi-clustering using adjacent-categories logit model via a finite mix-

ture model.

•Use simulation study and heat maps to evaluate our proposed model on row/column clustering and biclus-
tering. Apply model selection methods such as AIC and BIC.

• Evaluate and compare finite mixture clustering models and logistic regression models through an application
in Linguistics.

•Using randomised quantile residuals to construct a goodness-of-fit test for fuzzy clustering: Use X̂jc as the
weight, then calculate the weighted randomised quantile residual:

Ej =
C∑
c=1

X̂jcεjc

•Apply LASSO [4] on clustering and compare it with fuzzy clustering via finite mixtures. By solving the
quasi-likelihood equations such as GEE [3] subject to

m∑
j<h

ωjh|βj − βh| ≤ s and
m∑
j=1

βj = 0

where ωjh is the weight, βj is the column effect of the jth column. If we have very similar values of β̂j, we
can merge them and cluster the corresponding columns into the same clusters.
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