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Testing the significance of the random effects in the 
mixed models remains a crucial step in data analysis 
practise and a topic of research interest. Hui et. al. 
(2018) revisited the F-test, which was originally 
proposed by Wald (1947), and generalized the 
application to test subsets of random effects in a 
mixed model framework. They allows correlation 
between random effects, and showed that F test is an 
exact test when the first two moments of the random 
effects are specified.
We extend Hui et al. (2018)’s work and examine F 
test under non-normality of the residual errors. The 
model considered is

which satisfies the following:
• The distributional assumptions for random effect 

are E( )= and Cov( )= .
• The distributional assumptions for residual are 

E( )= and Cov( )= .

F Test for Testing a Subset of Random Effects
Suppose we wish to test

where is a non-zero and positive-definite 
matrix. and are non-zero matrices. The F test 
statistic is 

where and 

Bootstrap Hypothesis Test for F test
Residual Bootstrap
We constructed the null resampled dataset ∗

and obtain the residual bootstrap test statistic

where we specify ∗ ∗ and ∗ ∗. The 
bootstrap response ∗ is constructed under the null 

using ∗ elements resampled with replacement from .

Fast Double Bootstrap
To obtain further asymptotic refinement, we use the 
fast double bootstrap method discussed by Davidson 
and MacKinnon (2007). This procedure corrects p-
values by producing one 2nd-level bootstrap sample 
for each 1st-level sample to calculate a critical value 
at the nominal level equal to the first-level bootstrap p-
value. A brief description is given below:
1. Generate bootstrap samples under the null 

hypothesis, and obtain the 1st-level bootstrap 
statistic ∗ and p-value ∗.

2. Generate a single 2nd-level bootstrap sample for 
every bootstrap sample and obtain the ∗

quantile of ∗∗, defined as ∗∗.
3. Calculate the fast double bootstrap p-value as 

The non-normality features we consider include 
spread, skewness and asymmetry. In particular, the 
following three specific cases of non-normal errors 
are considered:
1. Student's t distribution with 3 df;
2. Zero-mean chi-squared distribution with 3 df; 
3. Contamination model with mixture normal and a 

20% contamination probability.

The random effects for each cluster was generated
from a multivariate normal distribution with mean 0
and a defined covariance D. The results show in 
Figure 1 is generated using the following setting: 

* R1=R2=0 means the null hypothesis tests random effects 1 and 2 are both equal to zero.
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Figure 1: Type I error and power for four underlying distributions with different cluster sizes when the number 
of cluster n=10. The four distributions considered in the simulations are the standard normal distribution
(normal), Student's t distribution with 3 df (student), the zero-mean chi-squared distribution with 3 df (chisq) 
and the two-component normal mixture distribution (2CMM). The methods compared included several well-
known methods, i.e., the F test (FLC), the parametric bootstrap likelihood ratio test (PB), the linear score 
(LinScore), the fast double bootstrap FLC test (FDB) and the residual bootstrap FLC test (BT). Performance 
was assessed in terms of percentage of datasets where the method rejected the null hypothesis. Each 
colored line represents one of four covariance matrices. The y-axis is plotted on a log-10 scale and the 
dashed line is the reference line for the nominated 5% significance level. The bootstrap sample size B is 500.
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Type I error rate:
Both residual bootstrap and fast double bootstrap F 
tests achieve the correct Type I error rate of 5%.

Both residual bootstrap and fast double bootstrap 
produce comparable results in term of power.

Bootstrap methods requires B  times more computing 
time than the original F test, where B is the number 
of bootstrap samples.







Bootstrapping F test using the residual bootstrap or 
the fast double bootstrap both performs well for 
normal and non-normal residual errors in the 
following aspects:

Simulation Design Sample 
Size

Independent Cluster with 2 fixed 
covariates and 2 uncorrelated 
random covariates

n={10,15};
m={3,5}

R1=R2=0*

The covariance matrix D is defined as
Here D1 represents the case in which null hypothesis is correct and result shows the type I error at the 
nominal 5% level. The results for D2, D3 and D4 show the power.


