50 Years of Genstat ANOVA

Roger Payne

VSN International, 2 Amberside, Wood Lane, Hemel Hempstead, UK

email: Roger.Payne@vsni.co.uk

It all started with Fisher

ANOVA

- Fisher & MacKenzie (1923) Studies in crop variation II. The manurial response of different potato varieties J. Agric. Sci.
- Fisher (1934) Discussion to 'Statistics in agricultural research' J. Roy. Statist. Soc., Suppl. "The analysis of variance is not a mathematical theorem, but rather a convenient method of arranging the arithmetic."

also started the strong links between Adelaide & Rothamsted

- Fisher "retired" to Adelaide in 1957
- John Nelder visited the Waite in 1965-6
- Graham Wilkinson worked at Rothamsted from 1971-5
- John Gower worked for CSIRO DMS in Adelaide in 1975
- I worked for DMS in Adelaide 1978-9 (and visited New Zealand in May 79)

ANOVA

316 The Manurial Response of Different Potato Varieties

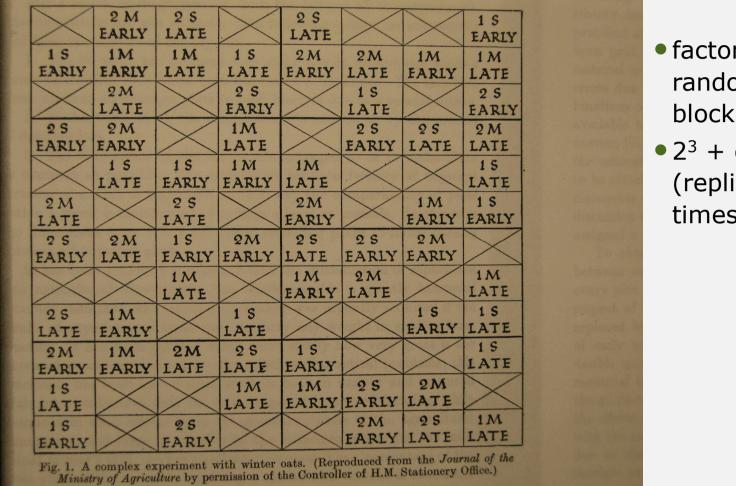
In Table III is shown the analysis of the variation into these four classes; the mean square deviation is found by dividing the sum of squares in each class by the number of degrees of freedom, while the standard deviation is shown in the last column. When this value is significantly greater than the standard deviation of the differences between parallel plots, we may conclude that the corresponding effect is not due to chance.

	Table II.	1.		
Variation due to	Degrees of freedom	Sum of squares	Mean square	Standard deviation
Manuring	5	6,158	1231.6	35.09
Variety	11	2,843	258.5	16.07
Deviations from summation formula	55	981	17.84	4.22
Variation between parallel plots	141	1,758	12.47	3.53
Total	212	11,740	1999 - <u></u>	12121

In comparing the standard deviations in the last column we may use the fact that 3.53, for example, has the same accuracy as if it had been determined from a sample of 142; the variance of its natural logarithm is therefore $\frac{1}{2 \times 141}$. Thus, to test if the deviations from the summation formula are significantly greater than would occur by chance, we compare the difference of the logarithms with its standard error, namely $\sqrt{\frac{1}{282} + \frac{1}{110}}$:

- first reference to analysis of variance (variation sic.)
- 12 varieties ×2 dung (+,-) ×3 fertilizers (basal, sulphate, chloride)
- ignored block structure (half-field / (plot * row))
- fitted main effects of variety and manures, and their interaction tested by using approximate Normality of log(variance)

then fitted a multiplicative model (by eigenvalue decompositions)
 VSNi ··


Design of Experiments started with Fisher too..

• Fisher (1926) The arrangement of field experiments. J. Min. Ag. G. Br.

- systematic designs introduce "a flagrant violation of the conditions upon which a valid estimate {of error} is possible" ... "The estimate of error is valid because, if we imagine a large number of different results obtained by different **random** arrangements, the ratio of the real to the estimated error, calculated afresh for each of these arrangements, will be actually distributed in the theoretical distribution by which the significance of the result is tested."
- "It would be exceedingly inconvenient if every field trial had to be preceded by a succession of even ten uniformity trials; consequently since the only purpose of these trials is to provide an estimate of the standard error, means have been devised for obtaining such an estimate from the actual yields of the trial year. The method adopted is that of **replication**."
- "No aphorism is more frequently repeated in connection with field trials, than that we should ask nature few questions or, ideally, one question, at a time. The writer is convinced that this view is mistaken. Nature, he suggests, will best respond to a logical and carefully thought out questionnaire; indeed, if we ask her a single question, she will often refuse to answer until some other topic has been discussed."
- also introduced **blocking** and use of the Latin square

First design used in practice

 factorial in randomized blocks

• 2^3 + control (replicated 4 times)

• Eden & Fisher (1927) Studies in crop variation IV The experimental determination of the value of top dressings with cereals J. Agric. Sci.

VSNi

Analysis of variance

	i may be ree the s That stay		e IV. squares
	Degrees of freedom	Grain	Straw
Blocks Treatments Errors	$ \begin{array}{c} 7 \\ 8 \\ {24} \\ {56} \end{array} $	2,286.4387.0773.22,508.8	$\begin{array}{c} 27,556\cdot 8\\ 18,667\cdot 1\\ 5,491\cdot 2\\ 18,556\cdot 3\end{array}$
Total	95	5,955.4	70,271.4

distinguished between

- plot error (24 d.f.) from within-block replicates of null control
- block-treatment interaction ("differential responses")

Analysis of variance

🖹 Output						
Analysis of variance	е					
Variate: Grain						
Source of variation	d f.	7 5 752	m.s.	3 9 2.125	F pr.	
Blocks stratum	7	2286.44	326.63	10.14		
Blocks.Plots stratum						
Treatments	8	387.01	48.38	1.50	0.209	÷
Blocks.Treatments	56	2508.72	44.80	1.39	0.189	
Residual	24	773.21	32.22			
Total	95	5955.39				~

- block-treatment interaction not significant
 - so can combine errors

Analysis of variance

Analysis of variand	e					^
Variate: Grain						
Source of variation	d.f.	S. S.	m.s.	v.r.	F pr.	
Blocks stratum	7	2286.44	326.63	8.04		
Blocks.Plots stratum						
Anytreat	1	191.75	191.75	4.72	0.033	
Anytreat.Amount	1	24.84	24.84	0.61	0.437	
Anytreat.Timing	1	76.84	76.84	1.89	0.173	
Anytreat.Type	1	17.67	17.67	0.43	0.512	
Anytreat.Amount.Timing	1	35.07	35.07	0.86	0.356	
Anytreat.Amount.Type	1	7.48	7.48	0.18	0.669	
Anytreat. Timing. Type	1	23.31	23.31	0.57	0.451	-
Residual	81	3292.00	40.64	5468.89403	SANDAR BARK	100
Total	95	5955.39				1

significant effect of nitrogen

but not of differences in Amount, Timing or Type

VSNi

Later work - Frank Yates

- Yates (1933) The principles of orthogonality and confounding in designed experiments. *J. Agric. Sci*
 - (1933) "since it is logically impossible that an interaction should exist without a main effect, the significance of main effects should be tested strictly on the assumption that their interactions are negligible" (c.f. Nelder, 1977, A reformulation of linear models. JRSS A)
 - confounding of main effects split plots, strip plots, Latin square with additional treatment factors applied to rows, and to columns
 - confounding of interactions (to avoid blocks becoming too large)
- Yates (1935) Complex experiments. J. Roy. Statist. Soc., Suppl.
 - partial and balanced confounding
- Yates (1936) Incomplete randomized blocks. Ann. Eugenics
 - balanced incomplete blocks, efficiency factor
- Yates (1937) Design and Analysis of Factorial Experiments
 - includes **Yates' ANOVA algorithm** orthogonal designs, one error term

The Yates algorithm

- Yates (1937) *Design and Analysis of Factorial Experiments,* p.15
- calculates *Yates effects* for 2***n* designs
- form a variate of treatment totals
- form next variate with sums of pairs of values in upper half, differences of pair of values in lower half
- do this *n* times
- final column has response totals for the treatment terms
- divide by replication of main effects to get Yates effects
- also works for factors with more than 2 levels, e.g. for 3 estimates linear and quadratic contrasts (see e.g. *Encyclopedia of Statistical Sciences*, Volume 9, pp. 659-662)
- essentially provides a formal process for the estimation of effects from differences of means

The Yates algorithm

MATRIX [ROWS=8; COLUMNS=8; VALUES=\ 23 24 1, 1, 0, 0, 0, 0, 0, 0, 0, 00, 0, 1, 1, 0, 0, 0, 0, 025 26 0, 0, 0, 0, 1, 1, 0, 0,27 0, 0, 0, 0, 0, 0, 0, 1, 1,28 -1, 1, 0, 0, 0, 0, 0, 0, 00, 0, -1, 1, 0, 0, 0, 0, 029 0, 0, 0, 0, -1, 1, 0, 0,30 0, 0, 0, 0, 0, 0, -1, 1] SumAndDiff 31 32 " Form treatment totals " 33 TABULATE [CLASS=D,K,N] Yield; TOTALS=Totals 34 " Put totals into a variate (in standard order) " 35 VTABLE Totals; VARIATE=Col[0]; CLASS=Class 36 VARIATE [NVALUES=NVALUES(Col[0])] Col[1...4] 37 CALCULATE Col[1] = SumAndDiff *+ Col[0] 38 CALCULATE Col[2] = SumAndDiff *+ Col[1] 39 CALCULATE Col[3] = SumAndDiff *+ Col[2] 40 CALCULATE Col[4] = Col[3] / 16 41 PRINT Class['N', 'K', 'D'], Col[]; FIELD=3(1), 5(8); HEAD=3(' '), 'Yield', '(1)', '(2)', 'Total', 'Effect' 42 Yield (1) (2) Total Effect 851 425 3172 9331 583.2 426 2321 6159 333 20.8 n _ _ 86 1118 2679 2271 141.9 n k 1203 3480 247 105 6.6 _ _ d 1283 1 1470 2987 186.7 n d 1396 85 801 161 10.1 1673 113 84 -669 -41.8 k d nkd 1807 134 21 -63 -3.9

VSNi

The Yates algorithm

	Yield	(1)	(2)	Total	Effect
	425	851	3172	9331	583.2
n	426	2321	6159	333	20.8
k	1118	2679	86	2271	141.9
n k _	1203	3480	247	105	6.6
d	1283	1	1470	2987	186.7
n d	1396	85	801	161	10.1
_ k d	1673	113	84	-669	-41.8
nkd	1807	134	21	-63	-3.9

43

44 TREATMENTSTRUCTURE N * K * D 45 ANOVA [PRINT=effects; TWOLEVEL=Yates] Yield Tables of effects

Variate: Yield

N Y-effect 20.8, s.e. 6.48, rep. 16

K Y-effect 141.9, s.e. 6.48, rep. 16

D Y-effect 186.7, s.e. 6.48, rep. 16

N.K Y-effect 6.6, s.e. 6.48, rep. 8

N.D Y-effect 10.1, s.e. 6.48, rep. 8

VSNi

K.D Y-effect -41.8, s.e. 6.48, rep. 8

Later work – John Nelder

- General balance
 - Nelder, J.A. (1965a,b). The analysis of randomized experiments with orthogonal block structure. *Proceedings of the Royal Society, Series A*, 283, 147-178.
 - Payne, R.W. (2014) Developments from analysis of variance through to generalized linear models and beyond. *Ann. Appl. Biol.* 164, 11–17. (*historical context*)
- conditions
 - block terms mutually orthogonal
 - treatment terms mutually orthogonal
 - single efficiency factor, for each treatment term, in each stratum
- close relationship to designs analysable by ANOVA
 - clarified by Payne & Tobias (1992)

The ANOVA algorithm

- Wilkinson (1970) A general recursive algorithm for analysis of variance. *Biometrika*, 57, 19-46.
 - non-orthogonal designs
 - several error terms
 - *K*th order balance (several efficiency factors for each model term)
- James & Wilkinson (1971). Factorisation of the residual operator and canonical decomposition of non-orthogonal factors in analysis of variance. *Biometrika*, 58, 279-294.
 - underlying theory
 - canonical efficiency factors
- Payne & Wilkinson (1977). A general algorithm for analysis of variance. *Applied Statistics*, 26, 251-260.
 - new dummy analysis
 - first-order balance only
 - pseudo-factors used for terms with more than one efficiency factor
- Payne & Tobias (1992) General balance, combination of information and the analysis of covariance. *Scand. J. Stats.*, 19, 3-23.
 - relationship of first order balance to general balance does not require orthogonal block or treatment structures (but need these in practice for a full analysis)

GENSTAT V RELEASE 4.04B COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STATION)

122 'REFERENCE' ANOVA(4) -123 '' -124 ANALYSIS OF SPLIT PLOT DESIGN -125 (YATES, F: THE DESIGN AND ANALYSIS OF FACTORIAL EXPER -126 TECHNICAL COMMUNICATION NO. 35 OF THE COMMONWEALTH -127 BUREAU OF SOILS, P74) -128 A VARIETAL AND MANURIAL TRIAL OF OATS -129 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO -130 WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN -131 AREA OF EACH SUB PLOT WAS 1/80 ACRE '' '' 133 'UNITS' \$72 134 'NAMES' N=0-CWT, 0.2-CWT, 0.4-CWT, 0.6-CWT 135 : V=VICTORY, GOLDRAIN, MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,32,11,1,2,4,3,1,4,2,3,3,4,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,4,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,4,4,1,1 144 'READ/PRIN=DE' YIELD 145 : CALC' YIELD=(YIELD*80)/(112*4) 145 'HEADING' H=' 'OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$2;H		
 ANALYSIS OF SPLIT PLOT DESIGN (YATES,F: THE DESIGN AND ANALYSIS OF FACTORIAL EXPER TECHNICAL COMMUNICATION NO. 35 OF THE COMMONWEALTH BUREAU OF SOILS, P74) A VARIETAL AND MANURIAL TRIAL OF OATS 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN AREA OF EACH SUB PLOT WAS 1/80 ACRE '' 'NAMES' N=0-CWT, 0.2-CWT, 0.4-CWT, 0.6-CWT 'NAMES' N=0-CWT, 60.2-CWT, 0.4.2, 3, 1, 2, 3, 4, 3, 1, 2, 4, 4, 1 'NAMES' N=0-CWT, 60.2-CWT, 0.4.2, 3, 1, 2, 3, 4, 3, 1, 2, 4, 4, 1 'NAMES' N=0-CWT, 60.2-CWT, 0.4.2, 3, 1, 2, 3, 4, 3, 1, 2, 4, 4, 1 '' <		
 (YATES,F: THE DESIGN AND ANALYSIS OF FACTORIAL EXPER- TECHNICAL COMMUNICATION NO. 35 OF THE COMMONWEALTH BUREAU OF SOILS, P74) A VARIETAL AND MANURIAL TRIAL OF OATS 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN AREA OF EACH SUB PLOT WAS 1/80 ACRE '' 'UNITS' \$72 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT ' V-VICTORY,GOLDRAIN,MARVLOUS 'FACTORS' BLOCK\$\$6 ' PLOT\$\$3 SUBPLOT\$\$4 SUBPLOT\$\$4 'SUBPLOT\$\$4 'VARIETY\$V=4(3,1,2,3,1,2,3,4,3,1,2,4,4,1,4,2,3,3,4,1,2,1,3,1,2,4,4,1,4,2,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3,1,2,4,4,1,4,2,3,2,3,4,1,2,3,4,2,1,3,1,2,2,4,3,1,2,2,4,4,1,4,2,3,3,4,1,2,1,3,1,2,2,4,3,1,4,2,4,3,1,4,2,3,3,4,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,3,1,2,2,3,1,3,2,1,2,1		
 TECHNICAL COMMUNICATION NO. 35 OF THE COMMONWEALTH BUREAU OF SOILS, P74) A VARIETAL AND MANURIAL TRIAL OF OATS 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN AREA OF EACH SUB PLOT WAS 1/80 ACRE '' 'UNITS' \$72 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT ' 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT ' 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT ' 'PLOTS\$3 SUBPLOTS\$4 SUBPLOTS\$4 SUBPLOTS\$4 'S VARIETY\$V=4(3,1,2,3,1,2,3,4,3,1,2,4,4,1 'CALC' YIELD 'CALC' YIELD=(YIELD*80)/(112*4) 'AREAD/PRIN-DE' YIELD 'CALC' YIELD \$ 2;H BLOCKS' BLOCKS/PLOTS/SUBPLOTS 'HEATMENTS' VARIETY*NITROGEN 'ANOVA/PR=12012' YIELD 'PAGE' 'BLOCKS' BLOCKS/PLOTS 48 1103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 019 99 63 70 80 94 126 82 90 100 116 62 'FO 60 89 102 112 86 68 64 132 124 129 89 		
 127 BUREAU OF SOILS, P74) 128 A VARIETAL AND MANURIAL TRIAL OF OATS 129 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO 130 WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN 131 AREA OF EACH SUB PLOT WAS 1/80 ACRE 132 '' 133 'UNITS' \$72 134 'NAMES' N=0-CWT, 0.2-CWT, 0.4-CWT, 0.6-CWT 135 : V=VICTORY, GOLDRAIN, MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,2,4,3) 143 'GENERATE' BLOCKS, PLOTS, SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6¹/₂ 157 96 60 89 102 112 86 68 64 132 124 129 89 	-125	(YATES, F: THE DESIGN AND ANALYSIS OF FACTORIAL EXPERIMENTS,
 -128 A VARIETAL AND MANURIAL TRIAL OF OATS -129 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO -130 WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN -131 AREA OF EACH SUB PLOT WAS 1/80 ACRE '' ''		
 -129 6 BLOCKS OF 3 WHOLE PLOTS, ONE VARIETY GROWN ON EACH WHO -130 WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN -131 AREA OF EACH SUB PLOT WAS 1/80 ACRE 132 '' 133 'UNITS' \$72 134 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT 135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,4,3) 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H=' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89 		
 -130 WHOLE PLOTS SPLIT INTO 4 SUB-PLOTS FOR NITROGEN -131 AREA OF EACH SUB PLOT WAS 1/80 ACRE 132 '' 133 'UNITS' \$72 134 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT 135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,2,3,1,3,2,1,2,1		
-131 AREA OF EACH SUB PLOT WAS 1/80 ACRE 132 '' 133 'UNITS' \$72 134 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT 135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2, 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		· · · · · · · · · · · · · · · · · · ·
<pre>132 '' 133 'UNITS' \$72 134 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT 135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2, 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89 </pre>		
<pre>133 'UNITS' \$72 134 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT 135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2, 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		AREA OF EACH SUB PLOT WAS 1/80 ACRE
<pre>134 'NAMES' N=0-CWT,0.2-CWT,0.4-CWT,0.6-CWT 135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2, 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
<pre>135 : V=VICTORY,GOLDRAIN,MARVLOUS 136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,1) 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
<pre>136 'FACTORS' BLOCKS\$6 137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,1) 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
<pre>137 : PLOTS\$3 138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2, 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
138 : SUBPLOTS\$4 139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,1,1,2,1,3,1,2,1,1,2,1,1,2,1,1,1,1		
139 : NITROGEN\$N=4,3,2,1,1,2,4,3,1,2,3,4,3,1,2,4,4,1 140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4		
140 2,3,4,1,4,2,3,1,1,4,2,3,3,4,1,2,1,3 141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,3		
141 4,1,3,2,3,4,1,2,3,4,2,1,3,1,4,2,4,3 142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,1,1,1		
<pre>142 : VARIETY\$V=4(3,1,2,3,1,2,2,3,1,3,2,1,2,1,3,1,2, 143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6^[2] 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
<pre>143 'GENERATE' BLOCKS,PLOTS,SUBPLOTS 144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
144 'READ/PRIN=DE' YIELD 145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
145 'CALC' YIELD=(YIELD*80)/(112*4) 146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
146 'HEADING' H='' OF OATS IN CWT. PER ACRE'' 147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
<pre>147 'DESCRIBE' YIELD \$ 2;H 148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6 157 96 60 89 102 112 86 68 64 132 124 129 89</pre>		
148 'BLOCKS' BLOCKS/PLOTS/SUBPLOTS 149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
149 'TREATMENTS' VARIETY*NITROGEN 150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
150 'ANOVA/PR=12012' YIELD 151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
151 'PAGE' 152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6 157 96 60 89 102 112 86 68 64 132 124 129 89		
152 'RUN' 153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6 157 96 60 89 102 112 86 68 64 132 124 129 89		•
153 156 118 140 105 111 130 174 157 117 114 161 141 154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6 157 96 60 89 102 112 86 68 64 132 124 129 89		
154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6 157 96 60 89 102 112 86 68 64 132 124 129 89	152	KUN
154 104 70 89 117 122 74 89 81 103 64 132 133 155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 6 157 96 60 89 102 112 86 68 64 132 124 129 89	153	156 118 140 105 111 130 174 157 117 114 161 141
155 108 126 149 70 144 124 121 96 61 100 91 97 156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
156 109 99 63 70 80 94 126 82 90 100 116 62 157 96 60 89 102 112 86 68 64 132 124 129 89		
157 96 60 89 102 112 86 68 64 132 124 129 89		
158 118 53 113 74 104 86 89 82 97 99 119 121	158	118 53 113 74 104 86 89 82 97 99 119 121

159 'EOD'

VSNi

VARIATE: YIELD OF OATS IN CWT. PER ACRE SOURCE OF VARIATION DF SS SS% MS VR BLOCKS STRATUM 5 506.227 30.54 101.245 BLOCKS, PLOTS STRATUM VARTETY 2 56.963 3.44 28,482 1,485 RESIDUAL 191.751 19.175 10 11.57 20.726 TOTAL 12 248.714 15.00 BLOCKS, PLOTS, SUBPLOTS STRATUM NITROGEN 3 638.409 38.51 212.803 37.686 6 10.260 1.710 VARIETY.NITROGEN 0.62 0.303 RESTDUAL 45 254.106 15.33 5.647 54.46 16.718 TOTAL 54 902.774 71 GRAND TOTAL 1657.715 100.00 GRAND MEAN 18.57 TOTAL NUMBER OF OBSERVATIONS 72 ***** TABLES OF EFFECTS AND RESIDUALS ***** VARIATE: YIELD OF OATS IN CWT. PER ACRE *** BLOCKS STRATUM *** BLOCKS RESIDUALS: REP 12 SE 2.652 BLOCKS 1 2 3 4 5 6 5.60 -1.04 0.59 -2.33 -1.44 -1.38

***** ANALYSIS OF VARIANCE *****

*** BLOCKS.PLOTS STRATUM ***							
*** BLUCKS.PLUI	S STRATUM	~~ ~					
VARIETY		EFFE	CTS:	REP	24	ESE	0.894
VARIETY	VICTORY GO -1.13	OLDRAIN M 0.09	ARVLOUS 1.04				
BLOCKS.PLOTS		RESI	DUALS:	REP	4	SE	1.632
PLOTS BLOCKS 1		2					
2	-1.60 0.98		1.66 -2.44				
4		0.72	-2.44				
5	-1.73		2.99				
6	-0.07	-1.17	1.24				

*** BLOCKS.PLOTS.SUBPLOTS STRATUM ***

NITROGEN		EFFECTS:		REP	18	ESE	0.560	
NITROGEN	0-CWT -4.39	0.2-CWT -0.91	0.4-CWT 1.83	0.6-CWT 3.47				
VARIETY.NITROG	EN	EFF	ECTS:		REP	6	ESE	0.970
NITROGEN VARIETY	0-CWT	0.2-CWT	0.4-CWT	0.6-CWT				
VICTORY	-0.28	-0.51	0.53	0.26				
GOLDRAIN	0.01	-0.16	-0.01	0.16				
MARVLOUS	0.26	0.68	-0.51	-0.42				

VSNi

***** TABLES OF MEANS *****

VARIATE: YIELD OF OATS IN CWT. PER ACRE

GRAND MEAN 18.57

VARIETY	VICTORY	GOLDRAIN	MARVLOUS
	17.43	18.66	19.61

NITROGEN	0-CWT	0.2-CWT	0.4-CWT	0.6-CWT
	14.18	17.66	20.40	22.03

NITROGEN	0-CWT	0.2-CWT	0.4-CWT	0.6-CWT
VARIETY				
VICTORY	12.77	16.01	19.79	21.16
GOLDRAIN	14.29	17.59	20.48	22.29
MARVLOUS	15.48	19.38	20.92	22.65

***** STANDARD ERRORS OF DIFFERENCES OF MEANS *****

TABLE	VARIETY	NITROGEN	VARIETY NITROGEN
REP	24	18	6
SED	1.264	0.792	1.735
EXCEPT WHEN	COMPARING MEANS	WITH SAME	LEVEL(S) OF:
VARIETY			1.372

***** STRATUM STANDARD ERRORS AND COEFFICIENTS OF VARIATION *****

STRATUM	DF	SE	CV%
BLOCKS	5	2.905	15.6
BLOCKS.PLOTS	10	2.189	11.8
BLOCKS.PLOTS.SUBPLOTS	45	2.376	12.8

Advantages of ANOVA

- works by an efficient sequence of sweeps, which
 - calculate and subtract effects from a working variate
 - project (i.e. *pivot*) effects into the space of a block-term
- no matrix inversion, other than for covariate estimation
- effects with natural (weighted) sum-to-zero constraints
- provides effects from each stratum where a term is estimated
- intuitive algorithm (simple combinability) to calculate treatment effects combining information from several strata, with d.f.
- provides an efficient engine for permutation tests etc
- clear and comprehensive output

VSNi

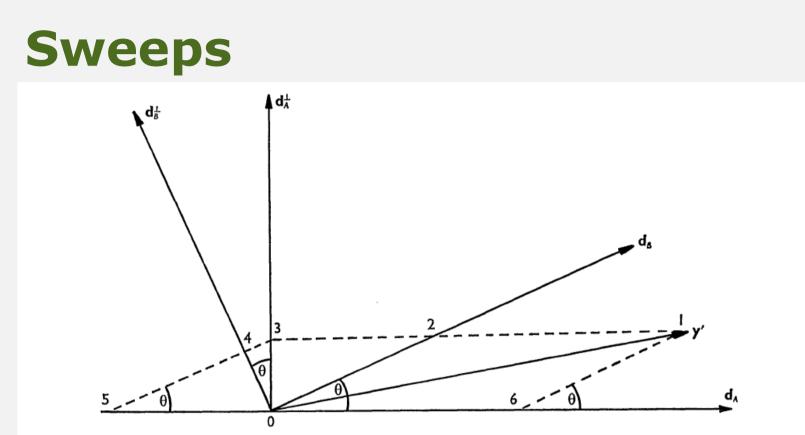


FIG. 1. A geometric representation of the sweeps required to analyse non-orthogonal terms A and B.

- sweep 1
 - estimate A as 31, projects $y \rightarrow 03$ (= 01 31)
- sweep 2
 - estimate B should be $35 = 04 / \sin(\theta) = 43 / \sin^2(\theta)$ (so $\sin^2(\theta)$ is the efficiency factor), projects $y \rightarrow 05 (= 03 - 35)$
- sweep 3
- **VSN** reanalysis sweep for A, $y \rightarrow 0$ (= 05 05)

Example

- Example C-C-397: Balanced lattice in 4 replicates
 - 9 treatments
 - 3 blocks of size 3 in each replicate

Treatments on each unit of the design

							Spreadsheet [E	3ook;1]*		×
	Blocks	4	2	2	Row	۳_0	۲ _1	<mark>፻</mark> 2	۳_3	+
Dealisates			2	3	1	1	1; 1; 1	1; 2; 4	1; 3; 7	^
Replicates	Plots			-	2	2	1; 1; 2	1; 2; 5	1; 3; 8	
1	1	1	4	7	3	3	1; 1; 3	1; 2; 6	1; 3; 9	
	2	2	5	8	4	4				
	3	3	6	9	5	5	2; 1; 1	2; 2; 2	2; 3; 3	
2	1	1	2	3	6	6	2; 1; 4	2; 2; 5	2; 3; 6	
	2	4	5	6	7	7	2; 1; 7	2; 2; 8	2; 3; 9	
	3	7	8	9	8	8				
3	1	1	2	3	9	9	3; 1; 1	3; 2; 2	3; 3; 3	
	2	5	6	4	10	10	3; 1; 5	3; 2; 6	3; 3; 4	
	3	9	7	8	11	11	3; 1; 9	3; 2; 7	3; 3; 8	
4	1	1	2	3	12	12				
	2	6	4	5	13	13	4; 1; 1	4; 2; 2	4; 3; 3	
	3	8	9	7	14	14	4; 1; 6	4; 2; 4	4; 3; 5	
	J	· ·	~	·	15	15	4; 1; 8	4; 2; 9	4; 3; 7	
					16	Row coordinates	Factors in table	Replicates; Blocks; Treatments		
					17	Column coordinates	1	2	3	
					? 🔽	<		497 	***** a	,

- represent treatments by factorial combinations of 2 pseudo-factors, A & B
- confounds A in rep 1, B in rep 2, AB in rep 3, AB² in rep 4

Example

• Example C-C-397: Balanced lattice in 4 replicates

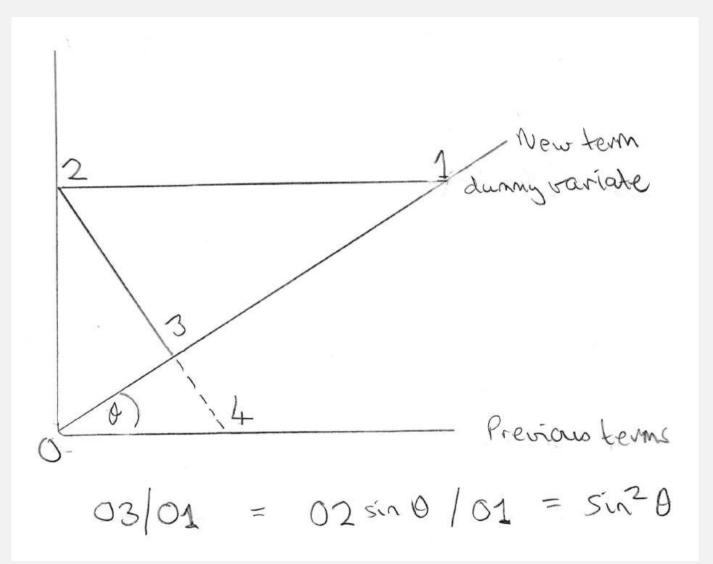
```
" sweep for grand mean "
ASWEEP workvar; RESIDUAL=workvar; RSS=ss['Total']
" sweep for Replications "
ASWEEP [TERM=Replications] workvar; RESIDUAL=workvar; EFFECTS=EffR; \
       SS=ss['Replications']
" sweep for Replications.Blocks "
ASWEEP [TERM=Replications.Blocks] workvar; RESIDUAL=workvar; EFFECTS=EffRB
" sweep for Treatments with efficiency 0.75 "
ASWEEP [TERM=Treatments; EFFICIENCY=0.75] workvar; RESIDUAL=workvar; \
       SS=ss['Treatments (0.75)']
" reanalysis sweep for Replications.Blocks "
ASWEEP [TERM=Replications.Blocks] workvar; RSS=ss['Residual']
" Replications.Blocks stratum: pivot "
ASWEEP [TERM=Replications.Blocks; EMETHOD=given; RMETHOD=replace] \
       workvar; RESID=workvar; EFF=EffRB
" sweep for Treatments "
ASWEEP [TERM=Treatments; EFFICIENCY=0.25] workvar; RESIDUAL=workvar; \
       SS=ss['Treatments (0.25)']
" reanalysis sweep (pivot) for Replications.Blocks "
ASWEEP [TERM=Replications.Blocks] workvar; RESIDUAL=workvar; \
       SS=ss['Replications.Blocks Residual']
```

Example output

s.s. from asweep

Source	S.S.
Replications	0.07739
Treatments (0.25)	2.14478
Replications.Blocks Residual	0.00000
Treatments (0.75)	2.50193
Residual	0.83398
Total	5.96090

Analysis of variance


VSNi

Variate: Y					
Source of variation	d.f.	S.S.	m.s.	V.f.	F pr.
Replications stratum	3	0.07739	0.02580		
Replications.Blocks stratum					
Treatments	8	2.14478	0.26810		
Replications.Blocks.*Units*	stratum				
Treatments	8	2.50193	0.31274	4.05	800.0
Residual	16	1.23681	0.07730		
Total	35	5.96090			

(as I remember it!)

- for each model term, in turn
 - generate a dummy variate in its design space, note initial s.s. = ss_0
 - sweep for the previous terms
 - calculate s.s. for current term = ss₁
 - efficiency factor is ratio of original effects to new effects, calculate as sqrt(ss₁/ss₀)
 - sweep for the current term with efficiency factor
 - reanalysis sweeps for previous terms (non-orthogonal terms have non-zero s.s.)
 - term is balanced if final s.s. = 0
- (time-consuming for large models)

-				-	-
FACTOR	[LEVELS=3] B,T;	VALUES=! (2(1,2,3)),!	(2,3,1,3,1,	,2)
" form	dummy variate	(1) "			
VARIATE	[VALUES=2,4,0,	4,0,2] D			
" remov	e marginal term	n (grand me	an) to put :	into space	of T effects "
ASWEEP	D; RESIDUAL=Du	ammy			
PRINT	B,T,D,Dummy				
В	Т	D	Dummy		
1	2	2.000	0.000		
1	3	4.000	2.000		
2	1	0.000	-2.000		
2	3	4.000	2.000		
3	1	0.000	-2.000		
3	2	2.000	0.000		
	(Roge FACTOR " form VARIATE " remov ASWEEP PRINT B 1 1 2 2	(Rogers & Wilkinson, FACTOR [LEVELS=3] B,T; " form dummy variate VARIATE [VALUES=2,4,0, " remove marginal term ASWEEP D; RESIDUAL=Du PRINT B,T,D,Dummy B T 1 2 1 3 2 1 2 3	(Rogers & Wilkinson, 1974, Ins FACTOR [LEVELS=3] B,T; VALUES=!("form dummy variate (1) " VARIATE [VALUES=2,4,0,4,0,2] D "remove marginal term (grand me ASWEEP D; RESIDUAL=Dummy PRINT B,T,D,Dummy B T D 1 2 2.000 1 3 4.000 2 1 0.000 2 3 4.000 3 1 0.000	(Rogers & Wilkinson, 1974, Institute of Ma FACTOR [LEVELS=3] B,T; VALUES=!(2(1,2,3)),! " form dummy variate (1) " VARIATE [VALUES=2,4,0,4,0,2] D " remove marginal term (grand mean) to put : ASWEEP D; RESIDUAL=Dummy PRINT B,T,D,Dummy 1 2 2 1 3 4.000 2 3 4.000 2.000 3 1	VARIATE [VALUES=2,4,0,4,0,2] D " remove marginal term (grand mean) to put into space ASWEEP D; RESIDUAL=Dummy PRINT B,T,D,Dummy 1 2 2.000 0.000 1 3 4.000 2.000 2 1 0.000 -2.000 2 3 4.000 2.000 3 1 0.000 -2.000


```
10 " sweep for T to get initial effects and s.s. (0->1) "
11 ASWEEP [TERM=T] Dummy; SS=ss0; EFFECTS=eff0
12 " sweep for B (1->2) "
13 ASWEEP [TERM=B] Dummy; RESIDUAL=Dummy
14 " sweep for T (2->3) but leave Dummy at 2 "
15 ASWEEP [TERM=T] Dummy; SS=ss1; EFFECTS=eff1
16 " calculate efficiency factor "
17 CALCULATE ef = SQRT(ss1/ss0)
18 PRINT ss0,ss1,ef & eff0,eff1
```

ss0	ss1	ef
16.00	9.000	0.7500

eff0	eff1
-2.000	-1.500
0.000	0.000
2.000	1.500
	-2.000 0.000

```
19 " sweep for T with efficiency factor (2->4) "
20 ASWEEP [TERM=T; EFFICIENCY=ef] Dummy; RESIDUAL=Dummy
21 " repeat sweep for B (4->0) "
22 ASWEEP [TERM=B] Dummy; RESIDUAL=Dummy; SS=Bss; RSS=Check
23 " note non-zero B s.s. => non-orthogonal, zero Check => balanced "
24 PRINT Bss,Check,Dummy
Bss Check Dummy
```

DSS	Check	Dummy
4.000	0	0
		0
		0
		0
		0
		0

25 " confirm with ANOVA "
26 BLOCKS B
27 TREATMENTS T
28 ANOVA

Analysis of variance

Source of variation	d.f.
B stratum T	2
B.*Units* stratum T Residual	2 1
Total	5

Information summary

Model term B stratum	e.f.	non-orthogonal terms
Т	0.250	
B.*Units* stratum T	0.750	В

- generate dummy variate containing all effects (Cauchy random numbers)
- sweep for grand mean, block terms and then treatment terms
- when a (new) term is found with a non-null sweep
 - remember effects = eff0, and s.s. = ss0 for new term
 - reanalyse for previous terms (note non-zero s.s. as non-orthogonal to new term)
 - re-estimate effects = eff1 and s.s. = ss1 for new term
 - if $ss1 \neq 0$ term is non-orthogonal: efficiency = $1 \sqrt{(ss1 / ss0)}$; term is balanced if ratio of new to old effects (eff1 / eff0) is constant; AN-1 if unbalanced
 - sweep for new term with efficiency factor
 - reanalyse for previous terms found to be non-orthogonal to new term
 - look for next new term
- for each block term (stratum
 - pivot into stratum and do sweeps as above, except that reanalysis sweep for the block term is a pivot
- (fewer sweeps, and better numerical accuracy than original method)

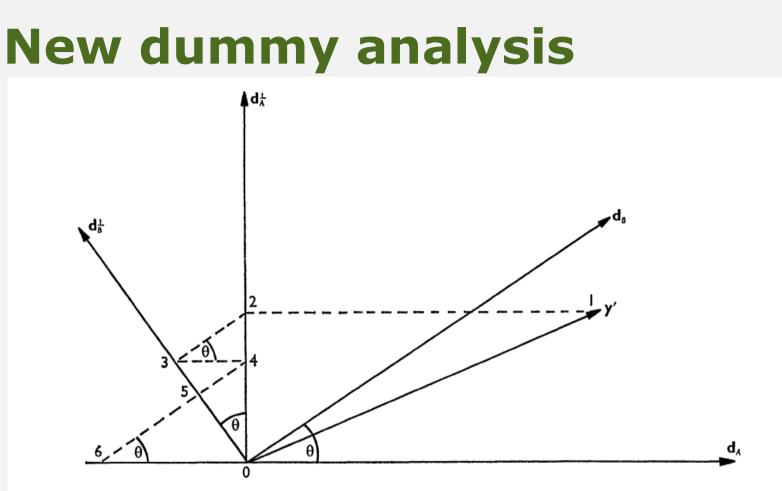


FIG. 2. A geometric representation of the sweeps required to determine the efficiency factor of B.

- $54 = 34 \cos(\theta) = 32 \cos^2(\theta)$
- efficiency factor = $\sin^2(\theta) = 1 54 / 32$


```
2 " new dummy analysis e.g. balanced-incomplete-block design
  -3 (Rogers & Wilkinson, 1974, Institute of Maths & Applications) "
   4 FACTOR [LEVELS=3] B,T; VALUES=! (2(1,2,3)),! (2,3,1,3,1,2)
   5 " form dummy variate (0) "
   6 CALCULATE [SEED=12345] Dummy = GRUNIFORM(NVALUES(T); 0; 1)
  7 &
               Dummy = TAN(C('pi')*(Dummy-0.5))
  8 " sweep for grand mean (1) "
   9 ASWEEP Dummy; RESIDUAL=Dummy
  10 " sweep for B (2) "
  11 ASWEEP [TERM=B] Dummy; RESIDUAL=Dummy
  12 " sweep for T (3) "
  13 ASWEEP [TERM=T] Dummy: RESIDUAL=Dummy: SS=ss0: EFFECTS=eff0
  14 " reanalysis sweep for B (4) "
  15 ASWEEP [TERM=B] Dummy; RESIDUAL=Dummy
  16 "sweep for T (5) to get new s.s. and effects (leave dummy unchanged) "
  17 ASWEEP [TERM=T] Dummy; SS=ssl; EFFECTS=effl
  18 " calculate efficiency factor "
  19 CALCULATE ef = 1 - SQRT(ss1/ss0)
  20 " check balance "
  21 CALCULATE Check = SUM((effl-eff0*SQRT(ssl/ss0))**2)
  22 PRINT ef,Check,ss0,ss1 & eff0,eff1
                  Check
                               ss0
          ef
                                           ss1
      0 7500
                      0
                              1.278
                                        0 07987
                    eff0
                               eff1
           Т
           1
                 -0.5393
                          -0.13482
           2
                 -0.0487
                          -0.01217
           3
                 0.5880
                         0.14700
  23 " sweep for T with efficiency factor (6) "
  24 ASWEEP [TERM=T; EFFICIENCY=ef] Dummy; RESIDUAL=Dummy
  25 " reanalysis sweep for B (0) "
26 ASWEEP [TERM=B] Dummy; RESIDUAL=Dummv
  27 " and could continue to next term... "
```

- simplified (faster) dummy analysis for orthogonal designs
- to detect strata and terms estimated in the bottom stratum
 - sweep for grand mean, block terms and then treatment terms (estimable ones will have non-zero s.s.)
 - repeat sweeps and, provided all are null, design is orthogonal "except in particularly complicated designs where terms are aliased"
- to detect terms estimated in the stratum for each block term
 - pivot into stratum, and do sweeps for treatment terms (those estimated there will have non-zero s.s.)
 - repeat sweeps and check that all are null if so, design is then (still) orthogonal
- if a non-null repeat sweep is found, design is non-orthogonal, and we need to switch to the full dummy analysis


```
2 " new dummy analysis for orthogonal designs
-3 e.g. balanced-incomplete-block design
-4 (Rogers & Wilkinson, 1974, Institute of Maths & Applications
 5 FACTOR [LEVELS=3] B,T; VALUES=! (2(1,2,3)),! (2,3,1,3,1,2)
 6 " form dummy variate "
 7 CALCULATE [SEED=12345] Dummy = GRUNIFORM(NVALUES(T); 0; 1)
              Dummy = TAN(C('pi') * (Dummy-0.5))
 8 &
 9 " sweep for grand mean "
10 ASWEEP Dummy; RESIDUAL=Dummy
11 " sweep for B "
12 ASWEEP [TERM=B] Dummy; SS=check; RESIDUAL=Dummy
13 IF check : PRINT 'B is estimable', check : ENDIF
                check
B is estimable
               0.3125
14 " sweep for T "
15 ASWEEP [TERM=T] Dummy; RESIDUAL=Dummy; SS=check; EFFECTS=eff0
16 IF check : PRINT 'T is estimable', check : ENDIF
                check
T is estimable
                1 278
17 " sweep again for B "
18 ASWEEP [TERM=B] Dummy; RESIDUAL=Dummy; SS=check
19 " sweep again for T "
20 ASWEEP [TERM=T] Dummy; SS=check; EFFECTS=eff1
21 IF check : PRINT 'design is non-orthogonal', check : ENDIF
                         check
 design is non-orthogonal
                       0.07987
```


Some problems

- partial aliasing
 - algorithm fits each term as a whole, so it does not know if some of effects are not estimated (except for those with zero replication or already removed by marginal terms)
- partial confounding
 - different contrasts of a term may be fitted in different strata, but the algorithm has no way of knowing how many have been fitted in each one (so d.f. and s.e.'s will then be incorrect)
- single d.f. terms
 - numerical coincidences in the dummy variate may mean that the s.s. for some contrasts may be nearly zero, so 1 d.f. terms may (very occasionally) fail to be detected

Partial aliasing and confounding

- Cochran & Cox (1957) Experimental Design, 2nd Edition, page 412
 - 5x5 Simple lattice with different contrasts confounded in replicates 1 & 2
 - this basic design is duplicated in replicates 3 & 4

Row	۳0	8_1	T_2	T _3	۳_4	۳_5	T_ 6	° _7	₽_8	T _9	۳ _10	۳ _11
1	1	1	6	11	16	21		1	2	3	4	5
2	2	2	7	12	17	22		6	7	8	9	10
3	3	3	8	13	18	23		11	12	13	14	15
4	4	4	9	14	19	24		16	17	18	19	20
5	5	5	10	15	20	25		21	22	23	24	25
6	6											
7	7	1	6	11	16	21		1	2	3	4	5
8	8	2	7	12	17	22		6	7	8	9	10
9	9	3	8	13	18	23		11	12	13	14	15
10	10	4	9	14	19	24		16	17	18	19	20
11	11	5	10	15	20	25		21	22	23	24	25
12	Y coordinates	Factors	Variety									
13	X coordinates	1	2	3	4	5	6	7	8	9	10	11

books generally present unrandomized plans (not a good idea!)

What could possibly go wrong..?

- (for simplicity analyse just reps 1 & 3)
- number blocks over the whole experiment
- ignore nested block structure
- ignore treatment confounding
- whoops..!

Analysis of variance

Variate: Yield								
Source of variation	d.f.	S.S.	m.s.	v.r.	F pr.			
Replicates stratum	1	103.68	103.68	6.62				
BlocksOverExpt stratum								
Variety	24	133.80	5.57					
Residual	-15	108.52						
Replicates.BlocksOverExpt.*Units*	* stratum							
Variety	24	473.20	19.72	1.26	0.327			
Residual	15	234.80	15.65					
Total	49	1054.00						

What could possibly go wrong..?

Warning 2, code AN 16, statement 1 on line 15

you've Command: ANOVA [PRINT=aovtable; FPROBABILITY=ves] Yield Partial aliasing. now been BlocksOverExpt is partially aliasedDegrees of freedom, mean squares and standard errors will be incorrect. warned..! Warning 3, code AN 18, statement 1 on line 15 Command: ANOVA [PRINT=aovtable; FPROBABILITY=yes] Yield Negative residual degrees of freedom. -15 residual degrees of freedom in the BlocksOverExpt stratum. Warning 4, code AN 17, statement 1 on line 15 Command: ANOVA [PRINT=aovtable; FPROBABILITY=yes] Yield Partial confounding. Variety is partially confounded Analysis of variance Variate: Yield Source of variation d.f. F pr. m.s. S.S. V.F. Replicates stratum 1 103.68 103.68 6.62 BlocksOverExpt stratum 5.57 Variety 24 133.80 108.52 Residual -15 Replicates.BlocksOverExpt.*Units* stratum 473.20 19.72 Variety 24 1.26 0.327 234.80 Residual 15 15.65 Total 49 1054.00

Some solutions

- check for partial aliasing in the orthogonal dummy analysis
 - calculate original s.s. for each term before starting analysis in each stratum
 - save s.s. for that term and its marginal terms during the dummy analysis
 - there is partial aliasing if sum of these s.s. is not equal to the original s.s.
- check that all the numbers of residual d.f. are non-negative
- the sum of the efficiency factors for each term must be ≤ 1
- ANOVA repeats the dummy analysis with different random numbers, and effects added in for aliased 1 d.f. terms
- define model to identify marginality
 - e.g. blocks/plots not blocks+plots
 - design menus save the correct models
 - analysis menus define the correct models for you
- use pseudo factors to identify partial confounding
 - design menus and commands can form these for you
- Payne, R.W. (1998). Detection of partial aliasing and partial confounding in generally balanced designs. *Computational Statistics*, 13, 213-226.

Getting it right

16 BLOCKS Replicates / BlocksOverExpt / Plots

- 17 TREATMENTS Variety // Blocks
- 18 ANOVA [PRINT=aovtable; FPROBABILITY=yes] Yield

Analysis of variance

Variate: Yield

Source of variation	d.f.	S.S.	m.s.	v.r .	F pr.
Replicates stratum	1	103.68	103.68	3.82	
Replicates.BlocksOverExpt stratur	n				
Variety	4	133.80	33.45	1.23	0.422
Residual	4	108.52	27.13	2.31	
Replicates.BlocksOverExpt.Plots	stratum				
Variety	20	473.20	23.66	2.02	0.063
Residual	20	234.80	11.74		
Tetel	40	4054.00			
Total	49	1054.00			

- recognise the nested block structure
- identify the confounded contrasts

- obtain effects combining information from all the strata where a treatment term is estimated
 - i.e. same effects as estimated by REML
 - requires general balance
 - efficient to calculate weighted average of the effects from each of the strata (simple combinability), weights are efficiency factors divided by stratum variances
- Payne & Tobias (1992) General balance, combination of information and the analysis of covariance. Scand. J. Stats., 19, 3-23.
 - algorithm for estimating stratum variances (and thus variance components)
 - extension to analysis of covariance combine covariate SSP's to estimate combined covariate regression coefficients

. .

```
" combination of information "
SPLOAD '%data%/slatehall.gsh'
BLOCK replicates/(rows*columns)
TREATMENTS variety
PDESTGN
ANOVA [PRINT=aovtable,stratumvariance,effects,cbeffect; FPROB=yes] yield
AKEEP replicates.rows + replicates.columns + replicates.rows.columns;\
     STRATUMVARIANCE=rvar, cvar, rcvar; COMPONENT=rvc, cvc, rcvc
AKEEP [STRATUM=replicates.rows] variety; EFFECTS=reffects; EFFICIENCY=refficiency
AKEEP [STRATUM=replicates.columns] variety; EFFECTS=ceffects; EFFICIENCY=cefficiency
AKEEP [STRATUM=replicates.rows.columns]\
      variety; EFFECTS=rceffects; EFFICIENCY=rcefficiency; CBEFFECTS=cbeffects
" show calculation - weighted average of effects from each stratum "
CALCULATE rweight, cweight, rcweight = refficiency, cefficiency, rcefficiency / rvar, cvar, rcvar
     wdiv = rweight + cweight + rcweight
&
     rweight,cweight,rcweight = rweight,cweight,rcweight / wdiv
&
     cbcheck = rweight*reffects + cweight*ceffects + rcweight*rceffects
&
PRINT cbeffects, cbcheck
" compare with REML "
VCOMPONENTS [FIXED=variety] RANDOM=replicates/(rows*columns)
REML [PRINT=model, components, means] yield
```

```
ADISPLAY [PRINT=cbmeans,stratumvariances]
```

VSNi

15 " show calculation - weighted average of effects from each stratum "

16 CALCULATE rweight, cweight, rcweight = refficiency, cefficiency, rcefficiency / rvar, cvar, rcvar

- 17 & wdiv = rweight + cweight + rcweight
- 18 & rweight,cweight,rcweight = rweight,cweight,rcweight / wdiv
- 19 & cbcheck = rweight*reffects + cweight*ceffects + rcweight*rceffects
- 20 PRINT cbeffects, cbcheck

	cbeffects	cbcheck
variety		
1	-1.869	-1.869
2	0.786	0.786
3	-0.495	-0.495
4	-0.186	-0.186
5	0.628	0.628
6	0.570	0.570
7	-0.697	-0.697
8	-0.131	-0.131
9	-1.716	-1.716
10	-2.772	-2.772
11	-1.432	-1.432
12	0.133	0.133
13	1.486	1.486
14	-1.438	-1.438
15	0.276	0.276
16	-1.243	-1.243
17	0.277	0.277
18	1.217	1.217
19	1.991	1.991
20	1.695	1.695
21	0.230	0.230
22	1.739	1.739
23	-1.413	-1.413
24	0.760	0.760
25	1.602	1.602

Table of predicted means for variety

variety	1 12.84		3 14.21			6 15.27		8 14.57	9 12.99
variety	10 11.93		12 14.84			15 14.98		17 14.98	18 15.92
variety	19 16.70	20 16.40	21 14.93	22 16.44	23 13.29	24 15.46	25 16.31		

Standard error of differences: 0.6202

25 ADISPLAY [PRINT=cbmeans, stratumvariances] Tables of combined means

Variate: yield

variety	2 15.490		5 15.333			8 14.574	9 12.989
variety	11 13.272						
variety	20 16.399		23 13.291	24 15.465	25 16.306		

Standard errors of differences of combined means

	Table	variety
	rep.	6
VSN	s.e.d.	0.6202
	effective d.f.	79.99

Related algorithms

- Hemmerle (1974) Northogonal analysis of variance using iterative improvement and balanced residuals. *JASA*, 69, 772-778
 - keep sweeping out fixed effects (all at once) with a common (postulated) efficiency factor
- Worthington (1975) General iterative method for analysis of variance when block structure is orthogonal. *Biometrika*, 63, 113-120
 - similar method extended to orthogonal block structures
- Payne (2003) General balance, large data sets and extensions to unbalanced treatment structures. *CSDA*, 44, 297-304.
 - method defined in context of general balance, first-order balance & sweeps
 - implemented in an unpublished Genstat procedure
 - not really a rival to REML
- Brien (2017) Procedures ACANONICAL etc.
 - implementation of full James & Wilkinson dummy analysis
 - rather slow...

VSNi

• •

Why still use ANOVA?

- encourages (requires?) you to design your experiment
 - and use of generally balanced designs
 - condition 1: block terms mutually orthogonal
 - key condition to be able to generate an analysis of variance
- example split-plot for 4 treatment factors
 - 8 cages of poultry
 - diet factors *Thyroxine* and *Yeast* applied to complete cages
 - factors *Hensfood* and *Sex* on individual chickens
 - response variate is gain in weight in second two weeks after hatching
 - John & Quenouille, 2nd Edition (1977) page 95

. .

ANOVA Analysis

Analysis of variance

Source of variation	d.f.	\$.\$.	m.s.	v.r.	F pr.
Cage stratum					
Thyroxine	1	14663.3	14663.3	25.72	0.007
Yeast	1	2592.0	2592.0	4.55	0.100
Thyroxine.Yeast	1	2.5	2.5	0.00	0.950
Residual	4	2280.7	570.2	0.77	
Cage.*Units* stratum					
Sex	1	2329.0	2329.0	3.14	0.079
Hensfood	1	85387.8	85387.8	115.29	<.001
Thyroxine.Sex	1	276.1	276.1	0.37	0.543
Yeast.Sex	1	157.5	157.5	0.21	0.646
Thyroxine.Hensfood	1	19900.1	19900.1	26.87	<.001
Yeast.Hensfood	1	8811.3	8811.3	11.90	<.001
Sex.Hensfood	1	544.5	544.5	0.74	0.393
Thyroxine.Yeast.Sex	1	666.1	666.1	0.90	0.345
Thyroxine.Yeast.Hensfood	1	91.1	91.1	0.12	0.726
Thyroxine.Sex.Hensfood	1	427.8	427.8	0.58	0.449
Yeast.Sex.Hensfood	1	18.0	18.0	0.02	0.876
Thyroxine.Yeast.Sex.Hensfood	1	101.5	101.5	0.14	0.712
Residual	108	79990.6	740.7		
Total	127	218240.0			

Estimated stratum variances

	Stratum	variance	effective d.f.	variance component
	Cage	570.17	4.000	-10.66
SN	Cage.*Units*	740.65	108.000	740.65

REML analysis

Estimated variance components

VSN

Random term Cage	componer -10.		s.e. 26.0		
Residual variance model					
Term Residual	Model(order) Identity	Parameter Sigma2		Estimate 734.8	s.e. 99.5
Tests for fixed effects					
Sequentially adding terms to fixed model					
Fixed term	Wald statistic	n.d.f.	F statistic	d.d.f.	F pr
Thyroxine	25.72	1	25.72	4.0	0.007
Yeast	4.55	1	4.55	4.0	0.100
Sex	3.17	1	3.17	109.0	0.078
Hensfood	116.21	1	116.21	109.0	<0.001
Thyroxine.Yeast	0.00	1	0.00	4.0	0.950
Thyroxine.Sex	0.38	1	0.38	109.0	0.541
Yeast.Sex	0.21	1	0.21	109.0	0.644
Thyroxine.Hensfood	27.08	1	27.08	109.0	<0.001
Yeast.Hensfood	11.99	1	11.99	109.0	<0.001
Sex.Hensfood	0.74	1	0.74	109.0	0.391
Thyroxine.Yeast.Sex	0.91	1	0.91	109.0	0.343
Thyroxine.Yeast.Hensfood	0.12	1	0.12	109.0	0.725
Thyroxine.Sex.Hensfood	0.58	1	0.58	109.0	0.447
Yeast.Sex.Hensfood	0.02	1	0.02	109.0	0.876
Dropping individual terms from full fixed m	odel				
Fixed term	Wald statistic	n.d.f.	F statistic	d.d.f.	F pr
Thyroxine.Yeast.Sex	0.91	1	0.91	109.0	0.343
Thyroxine.Yeast.Hensfood	0.12	1	0.12	109.0	0.725
Thyroxine.Sex.Hensfood	0.58	1	0.58	109.0	0.447
Yeast.Sex.Hensfood	0.02	1	0.02	109.0	0.876

General balance - advantages

- condition2: treatment terms mutually orthogonal
 - conclusions do not depend upon order of fitting

Analysis of variance

Source	d.f.		S.S.	m.s.	V.f.	F pr
Day	1		832.4	832.4	3.14	0.083
A ignoring B	2		2288.8	1144.4	4.31	0.019
A eliminating B	2 2 1		1572.7	786.4	2.96	0.062
B ignoring A	1		1900.0	1900.0	7.16	0.010
B eliminating A	1		1183.9	1183.9	4.46	0.067
A.B			1688.1	844.0	3.18	0.051
Residual	46		2212.8	265.5		
Total	52	1	8206.0	350.1		
Analysis of var	riance					
and your of var	i can i co co					
Variate: Y						
Variate: Y		d.f.	S.S.	m.s.	v.r.	Fpi
Variate: Y Source of variation		d.f. 1	s.s. 1441.0	m.s. 1441.0	v.r. 5.81	Fpi
CACCERS From LContracion		1	1441.0			Fp
Variate: Y Source of variation Day stratum Day.*Units* stratum A		1	1441.0 1826.4	1441.0 913.2	5.81 3.68	0.034
Variate: Y Source of variation Day stratum Day.*Units* stratum A B		1	1441.0 1826.4 1376.0	1441.0 913.2 1376.0	5.81 3.68 5.55	F pr 0.03- 0.02
Variate: Y Source of variation Day stratum Day.*Units* stratum A B A.B		1	1441.0 1826.4 1376.0 3040.0	913.2 1376.0 1520.0	5.81 3.68	0.034
Variate: Y Source of variation Day stratum Day.*Units* stratum A B			1441.0 1826.4 1376.0	1441.0 913.2 1376.0	5.81 3.68 5.55	0.03

General balance - advantages

- condition 3: balance one efficiency factor for each treatment term, in each stratum
 - e.s.e. = $\sqrt{\{(\text{stratum variance}) / (\text{replication } \times \text{efficiency factor})\}}$
 - precision depends on replication, not on (random) allocation of treatments to experimental units
 - e.g. give control treatment replication $\approx \sqrt{\{\text{no. test treatments}\}}$

. .

Efficiency of ANOVA

workspace

- e.g. balanced-incomplete-block design with b blocks, k plots per block and t treatments
 - general linear-mixed-model algorithm (REML) requires storage of a symmetric matrix with b+t+1 rows (for sums of squares and products) and vectors of size b and t for the block and treatment effects
 - ANOVA requires a working vector of size *bt*, two vectors of size *t* for treatment estimates between and within blocks, and a vector of size *b* if the block residuals are to be stored
- e.g. lattice design with r replicates, k blocks per replicate, k plots per block and k² treatments
 - REML requires storage of a symmetric matrix with k²+rk+r+1 rows and vectors of size k², rk and r for fixed and random effects
 - ANOVA requires storage of vectors of size *r* k², k², k², *rk* and *r*
- conclusion
 - REML workspace depends on the square of number of parameters
 - ANOVA workspace depends linearly on the number of parameters
- reference
 - Payne & Welham (1990) A Comparison of Algorithms for Combination of Information in Generally Balanced Designs. COMPSTAT 1990, 297-302.

Efficiency of ANOVA

- computation speed can still be an issue e.g. if you have many variates to analyse, or wish to do permutation tests
 - e.g. 10000 y-variates for split-plot for 4 treatment factors

```
2 spload [print=*] 'JQp95.gsh'
 3 calculate time0 = cputime(0)
4 blockstructure Cage
5 treatmentstructure Thyroxine*Yeast*Sex*Hensfood
6 for [ntimes=10000]
     anova [print=*; factorial=4; fprob=yes; design=savedes] Weight
 7
 8 endfor
9 calculate anovatime = cputime(0) - time0
10
11 calculate time0 = cputime(0)
12 vcomponents [fixed=Thyroxine*Yeast*Sex*Hensfood] Cage
13 for [ntimes=10000]
14 reml [print=*] Weight
15 endfor
16 calculate remltime = cputime(0) - time0
17
18 print anovatime, remltime
               remltime
  anovatime
                 61 81
     1 172
```


Conclusion

 Chris Brien & Roger Payne (2017).
 Graham Neil Wilkinson 1927–2016.
 Journal of the Royal Statistical Society, Series A, 180, 930–931.

- A key component {of Genstat} was Graham's algorithm for analysis of variance, which exploits the properties of balance in experimental designs to provide a uniquely efficient analysis that allows for different sources of random variation (error strata) and completely general combinations of crossing and nesting between factors.
- Heiberger (1981) The Specification of Experimental Designs to ANOVA Programs. American Statistician, 35, 98-104.
 - "At this time the GENSTAT ANOVA language provides the most complete capacity for the analysis of generally balanced designed experiments."
 - and that was even before combination of information, permutation
 tests, output to speadsheets, automatic reports etc....

Conclusion

. .

 so please keep on using ANOVA (and msanova)...!

